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ABSTRACT
There is an implicit assumption in machine learning tech-
niques that each new task has no relation to the tasks previ-
ously learned. Therefore, tasks are often addressed indepen-
dently. However, in some domains, particularly Reinforcement
Learning (RL), this assumption is often incorrect because tasks
in the same or similar domain tend to be related, means even
though tasks are quite different in their specifics, they may
have general similarities, such as shared skills, making them
related. In this paper, a novel domain adaptation based method
using adversarial networks is proposed to do transfer learning
in RL problems. Our proposed method incorporates skills pre-
viously learned from source task to speed up learning on a new
target task by providing generalization not only within a task
but also across different but related tasks. The experimental
results indicate the effectiveness of our method in dealing with
reinforcement learning problems.
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1 INTRODUCTION
The reinforcement learning (RL) paradigm is a popular way
for an autonomous agent to learn from experience with min-
imal feedback. The required learning time and the curse of
dimensionality restrict the applicability of RL on real-world
problems. According to the literature [24, 32, 35], it is believed
that state abstraction methods and hierarchical architectures
can improve the learning curve and lessen the hampering ef-
fect of the curse of dimensionality. While significant progress
has been made to improve learning in a single task, the idea of
transfer learning has only recently been applied to reinforce-
ment learning tasks [1, 8, 33, 34]. As a result, the researches
expressed that "transfer learning has recently gained popular-
ity due to the development of algorithms that can successfully
generalize information across multiple tasks" [37]. One of the
critical aspects of an intelligent agent is the ability to learn one
or multiple environments and transfer previous knowledge to
new environments, with similar situations to the previous one.
Towards this goal, an autonomous agent must be able to learn
first how to behave in a task effectively and then generalize its
obtained knowledge as much as needed to transfer and apply
in a new domain.

The insight behind Transfer Learning (TL) is that generaliza-
tion may occur not only within tasks but also across different
tasks which are from similar domains. Generally, the idea of
the transfer of knowledge in order to improve the performance

of machine learning algorithms stems from cognitive science
research. A vast number of psychological studies show human
beings can learn amazingly fast because they effectively bias
the learning process towards a very limited set of solutions
obtained by transferring the knowledge retained from solving
similar tasks. Similarly, the idea of TL is that it is possible to
improve the performance of any machine learning algorithms,
like the learning algorithm of autonomous agents, by bias-
ing their hypothesis space towards a set of good hypotheses
according to the knowledge retained from solving other tasks.

The main aim of this paper is to facilitate transfer learning
for an autonomous agent who can face not only homogeneous
problems but also the heterogeneous ones. In general, TL prob-
lems can be divided into heterogeneous and homogeneous by
considering whether the feature spaces between the source
and target domains are the same or not. So, our challenging
question must be answered is "How the source and target
tasks are related?". To answer this question, we propose a
novel domain adaptation based transfer learning approach
using an adversarial network. Our method is called DATLAN .
It is able to learn a transformation which helps an autonomous
RL based agent to adapt the domains of the source and target
task and consequently transfer its skills acquired from source
task into the target task.

Domain adaptation is a well-known technique associated
with transfer learning which seeks the same goal in machine
learning problems, especially pattern recognition. The goal
of a domain adaptation approach is to learn and find trans-
formations which can map both source and target domains
into a common feature space. On the other hand, Generative
Adversarial Networks(GAN ) [22] are a promising approach to
train a deep network and generate samples across diverse do-
mains. In many application, these networks can also improve
recognition despite the presence of domain changes or dataset
bias [21, 30, 39]. a GAN consists of two networks named gen-
erator and a discriminator. They are against each other, means
generator is trained to produce samples with the objective to
confuse the discriminator. Recently, one type of domain adap-
tation approaches which have recently become increasingly
popular is known as adversarial adaptation methods. These
type of methods seek to minimize an approximate domain
discrepancy distance through an adversarial objective with
respect to a domain discriminator. They are so closely related
to the principles of GAN based approaches. In domain adapta-
tion, the principle of GAN has been employed to ensure that
the network cannot distinguish between the distributions of
samples coming from the source and target domain [19, 23, 30]



Our proposed method, DATLAN , leverages adversarial do-
main adaptation principles to discover related skills between
the source and target tasks, transfer them, and boost the learn-
ing performance of agent in the target task. DATLAN method
has three main steps: first, learning source task and extracting
abstract skills by modeling both agent experiences and envi-
ronment dynamics in connectivity graph. Second, finding the
state-action inter-task mappings implicitly by leveraging ad-
versarial domain adaptation technique to learn a common fea-
ture space where the source and target domains can be aligned,
and then efficiently transferring the previously learned skills
into the target task to learn this new environment. The results
from experiments demonstrate that the proposed method is
able to find the relation between tasks and consequently trans-
fer effectively skills which were learned in source task. The
proposed method improves the performance of agent in target
task using the transferred knowledge.

The rest of this paper is organized as follows. Section 2
presents an overview of the related work. In Section 3, the
proposed skill based transfer learning via domain adaptation
approach is described. Experiments and results are reported in
Section 4, and Section 5 contains the conclusion and direction
for future works.

2 RELATEDWORK
As the type of transferred knowledge can be primarily char-
acterized by its level of specificity [36], the possible knowl-
edge transfer approaches can be classified into two main cat-
egories accordingly: low-level knowledge transfer and high-
level knowledge transfer. In RL domain, low-level information
can be considered as (s,a, r , s ′) tuples, an action-value function
Q , a policy π , or a full model of the task, whereas high-level
information can be considered as a subset of all actions used
in some situations or partial policies, skills or options, rules,
important features for learning, proto-value functions [31],
shaping rewards, or subtask definition.

As claimed in [36] and [38], it makes intuitive sense that
high-level knowledge may transfer better across tasks since
they can be obtained more independently compared to low-
level information. Low-level knowledge can all be directly
leveraged to initialize a learner in the target task. On the other
hand, high-level information may not directly be applicable
to transfer learning algorithms to fully define an initial policy
for the agent in the target task. However, such information
would guide the agent during its learning in the new target
environment. Moreover, transfer learning algorithms using
high-level knowledge assist the agent to learn a new task
more effectively than lower-level information. Please note that
the proposed method tries to transfer high-level knowledge,
namely a set of skills which were acquired from source task
into the target task.

By transferring skills, our method tends to detect and trans-
fer similar region among source and target task. The idea of
transferring similar regions among tasks was firstly proposed
in [28, 29] where the similar regions are determined using the
similarity between samples in source and target, indeed using
low-level knowledge. In contrast, our proposed method tries

to transfer similar regions identified with high-level knowl-
edge. Asadi et. al [6, 7] present an agent that learns options
and transfers them between different tasks. The agent tries to
find subgoals in the source task through identifying states that
are "locally from a significantly stronger attractor for state
space trajectories" [6]. Considering such subgoals helps the
agent define options. In [6, 7] source and target tasks differ
only in the reward function, while the proposed method would
be applied to the source and target tasks that may differ in
possible state transitions and state-action space.

As suggested by Lazaric et al. in [27], transfer learning
approaches in RL problems can be categorized based on the
number of involving source tasks and the difference between
source and target domains: 1) Transfer from one source task
to one target task with fixed domain, 2) Transfer across sev-
eral tasks (including a set of source tasks) with fixed domain,
3) Transfer across several tasks with different domains. As a
principle, it is stated that "the domain of a task is determined
by its state-action space, while the specific structure and goal
of the task are defined by the dynamics and rewards" [27].
According to this definition, the first and second categories
consist of problems whose state-action spaces are the same.
In contrast, source and target tasks in the third category have
different domains, meaning different state-action variables.
While this category is more common in real-world problems,
it involves one additional challenging issue to define the map-
ping between the source and target state-action variables. In
literature, such mappings are referred to Inter-task Mappings.
According to the presented categories, our proposed method
lies in the third case. It leverages a domain adaptation neural
network to find the inter-task mapping between source and
target tasks driven from different domains.

In literature, most of the researchers assume that the inter-
task mappings are predefined by experts according to their ex-
perience or intuition. There are some researchers who design
mechanisms to select good mappings from several predefined
mappings. In [16], two algorithms were proposed to select
the best mapping from multiple mappings for both model-
based and model-free RL algorithms to transfer from multi-
ple inter-task mappings. Similarly, the authors proposed a
method in [17] to autonomously select mappings from the set
of all possible inter-task mappings. In [14], authors proposed a
many-to-one mapping for the transfer learning, named linear
multi-variable mapping. It uses the linear combination of the
information from different related state variables and action
to initialize the target task learning. However, their approach
still requires an expert to provide the parameters of the linear
combination, and the optimal parameter values are not easy
to be given.

There are also some methods for learning inter-task map-
ping automatically. In [12], authors used a Neural Network to
map actions from the source domain to the target domain by
observing the results of the two actions in the source domain
and target domain so as to learn the weights of the network.
However, the mapping between the states is predefined by
an expert. On the other hand, researches in [13] proposed an
artificial neural network based method to learn both action
and state inter-task mapping between source task and target
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task. The obtained inter-task mapping is used to transfer the
knowledge learned in the source task into the target task for
initialization.

The closest approaches related to our work are the ap-
proaches which are trying to find an inter-task mapping for a
pair of tasks or finding the MDP similarities in order to have ef-
fective TL approach [4, 18]. Authors in [5] proposed a transfer
learning framework which learns the inter-task mapping by
representing the source and target data, in a form of (s,a, s ′),
in a high dimensional space discovered using sparse coding,
projection, and Gaussian process.

In [2, 3], authors proposed a transfer learning method in the
context of policy gradient RL. The multi-task learning method
proposed in [2] transfers the shared knowledge between se-
quential decision making tasks by incorporating latent ba-
sis into policy gradient learning. In [3], the proposed system
transfers the source samples into the target by discovering a
high-level feature space through learning inter-task mapping
via an unsupervised manifold alignment. Similarly, Bocsi et. al
in [11] proposed an alignment-based transfer learning method
for robot models. The primary differences with our work are
that they focused on transferring models or policies/samples
between different tasks, rather than high-level knowledge,
i.e. skills, therefore the authors needed a similarity metric for
MDPs. Deposit the invaluable research done for transfer learn-
ing in the RL realm, to the best of our knowledge, there are still
open directions in this area to transfer autonomously learning
without requiring any background knowledge.

3 DOMAIN ADAPTATION BASED
TRANSFER LEARNING USING
ADVERSARIAL NETWORK

In our proposed method, the autonomous agent uses a domain
adaptation technique to discover a mapping that can align
the state-action spaces of the new environment to the one
which was learned previously. This mapping is called inter-
task mapping between state-action spaces of the source and
target environments. Here, we utilize the concept of domain
adaptation technique in order to facilitate transfer learning
across domains with different state-action spaces. Our pro-
posed agent must perform three learning phases: 1) Learning
source task, 2) Learning the similarities between the source
and target tasks, and 3) Learning target task.

As the first step, the agent should learn the source task
properly and its experiences must be captured as high-level
knowledge such as skills in order to be appropriately trans-
ferred. Many approaches have been proposed to extract skills
in RL realm. Among them, we suggest using Graph-based Skill
Learning method (GSL) which is proposed in [33]. The promis-
ing results demonstrated that GSL approach not only can find
appropriate skills but also results in notable improvements in
the learning performance of the agent. The agent’s experiences
are captured as a connectivity graph which gives information
about both the agent’s dynamic behavior and the environ-
ment’s dynamics. The communities found from such graph
divides the state-space into regions called accessible regions
and the agent learns the problem by extracting a skill for each

accessible regions. GSL accomplishes hierarchical learning by
decomposing a problem into the set of skills and then benefits
Option framework [35] to learn those skills.

After learning the source task, the next step is determining
"How the two tasks with different state variables and actions
are related?". A possible way to answer this question is finding
a common latent space where the source and target tasks
state-action spaces can be aligned. Domain adaptation is a
well-known technique which seeks the same goal in pattern
recognition. Considering a classification task where X is the
input space and Y = {0, 1, ...,L − 1} is the set of L possible
labels. Moreover, there are two different distributions over
X ×Y , called the source domain DS and the target domain DT .
An unsupervised domain adaptation learning algorithm is then
provided with a labeled source sample S drawn i.i.d. from DS ,
and an unlabeled target sampleT drawn i.i.d. from DX

T , which
is the marginal distribution of DT over X .

S = {(xi ;yi )}ni=1 ∼ (DS )
n ; T = {(xi )}Ni=n+1 ∼ (D

X
T )

n′

with N = n + n′ being the total number of samples. The
goal is to build a classifier ν : X → Y with a low target risk
while having no information about the labels of DT .

In following, we detail how to develop and feed a GAN to
find the inter-taskmapping, align the samples of the source and
target tasks to each other, and consequently transfer the skills
which were learned before into the new environment. To do so,
we offer to adapt the state-of-the-art approach called domain-
adversarial neural network (DANN ) which incorporating a
domain adaptation component to neural networks [21]. We
feed DANN with two following sets of samples, S andT which
are collected from the source and target domain respectively:

S = { ( xSi , y
S
i ) }

n
i=1 where

xSi = < s
S , aS1 , s

′

aS1
, raS1
, QsS

aS1
, aS2 , s

′

aS2
, raS2
, QsS

aS2
, . . .

. . . ,aSk , s
′

aSk
, raSk
, QsS

aSk
>

ySi = ID of the skill that sample(state) sS located in.
(1)

T = { ( xTi ) }
N
i=n+1 where

xTi = < s
T , aT1 , s

′

aT1
, raT1
, QsT

aT1
, aT2 , s

′

aT2
, raT2
, QsT

aT2
, . . .

. . . ,aTk , s
′

aTk
, raTk
, QsT

aTk
>

(2)
where xSi is the ith sample collected from source domain. This
sample represents the current state sS , the state transition
(doing action aSj in the source environment makes the state
of agent change into s ′

aSj
, where j ∈ [1, 2, ..,k] and k is the

possible number of actions can be choosen in the source en-
vironment), given reward from the source environment by
choosing jth action raSj

, and the q-value QsS
aSj

which presents

the value of selecting aSj in current state, sS . ySi indicates the
ID of the skill in which the current state sS located. Similarly,
xTi represents the ith instance sampled from the target domain.
Figure 1 illustrates an example of sample representation in
Maze environment. Please note that in our setting, for each
sample in source domain ySi is discovered through learning
the source task, but yTi is not defined yet in the target domain.
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Therefore, we utilize DANN as an unsupervised domain adap-
tation to determine the yTi in the target domain by adapting
the source and target domains. Its architecture is shown in
Figure 2. It includes three deep neural networks: a deep feature
extractor, a deep skill predictor, and a domain classifier.

DANN is motivated and supported by the theory on domain
adaptation presented in [9, 10], "a good representation for cross-
domain transfer is one for which an algorithm cannot learn to
identify the domain of origin of the input observation. So, the un-
supervised domain adaptation architecture (Figure 2) focuses
on extracting and learning a feature set which combines both
discriminativeness (discriminative for learning the skill of a
given state in source environment) and domain-invariance
(invariant to the change of domains). It jointly optimizes the
underlying feature set as well as two discriminative classi-
fiers operating on this feature set: 1) Skill predictor predicting
ID of the skill that a given state located in, and 2) Domain
classifier discriminating between the source and the target
domains. As proposed in [21], DANN uses standard layers
and loss functions. It trains using standard backpropagation
algorithms based on stochastic gradient descent or its modifi-
cations (e.g., SGD with momentum). The domain classifier is
connected to the obtained feature set via a gradient reversal
layer resulting in the domain-invariant features, means the
feature set distribution over the two domains are made similar
and as indistinguishable as possible to classify the domain.
The optimization of training DANN is as follow:

E(θf ,θy ,θd ) =
1
n
∑n
i=1 L

i
y (θf ,θy ) −

λ( 1n
∑n
i=1 L

i
d (θf ,θy ) +

1
n′

∑N
i=n+1 L

i
d (θf ,θy ))

(3)
As suggested in [21], the saddle point optimizing above

equation can be found as a stationary point of the following
gradient updates:

θf ← θf − µ(
∂Liy

∂θf
− λ
∂Lid
∂θf
) (4)

θy ← θy − µ(
∂Liy

∂θy
) (5)

Figure 1: An example of sample representation in Maze
environment.

Figure 2: The unsupervised domain adaptation architec-
ture includes a deep feature extractor, a deep skill pre-
dictor, and a domain classifier connected to the feature
extractor via a gradient reversal layer. Gradient rever-
sal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as pos-
sible for the domain classifier), thus resulting in the
domain-invariant features.

θd ← θd − µλ(
∂Lid
∂θd
) (6)

where µ is the learning rate. Stochastic estimates of these
gradients are used by sampling examples from the data set.

In our proposed approach, the output of first learning phase
is a set of skills extracted and learned from the source task
and the output of second learning phase is a learned deep neu-
ral network which identifies the state-action space mappings.
Since in RL literature skills can be formulated using Option
framework [35] as a well-defined temporal abstraction frame-
works extending RL algorithms from primitive actions to time
extended activities, our agent uses this framework not only to
learn skills in source task and construct its own high level skill
hierarchy, but also to transfer them into target task. So, for
each skill, an optionO is created and its properties, namely the
termination condition OT , reward function OR , initiation set
OI , and its internal function approximator should be defined
or learned. Following skill id assignment to each sample of the
target using DANN, the termination condition OT , initiation
set OI , and reward function OR of each option can be defined
as suggested in [33]. But, the function approximator of a skill
cannot be transferred directly, because its parameters were
learned in the source domain, where both state and action
spaces are different from the target. To successfully transfer
the function approximators, the agent learns skills’ function
approximators offline by utilizing the output of GANN and the
q-value of samples in source task. To negative transferring, we
suggest aKNN basedmechanism to eliminate samples whosek
nearest neighbors do not have the same skill id . These samples
are considered as negative samples, indeed they may be noisy
or border samples and in both cases, it is better to eliminate
them.
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In spite of the previous researches that have initiated new
option policies using the past experiences, it is indicated in [25]
that these extra updates may be experimentally confounding.
Therefore, we would not directly add the transferred skills to
the agent’s action repertoire. These skills are firstly considered
as gestating skills which are allowed to have a gestating period
(e.g., 10 episodes), where they cannot be selected for execution
but their policies are updated using off-policy learning. Each
gestating skill finishing its gestating period would be added to
the agent’s action set as a learned skill and assign appropriate
initial values as its value. The initial value of a new transferred
skill is considered as the maximum of Q values of its border
states estimated during the gestating period.

In addition, our proposed method tends to improve the per-
formance agent by transferring the previously learned skills
into the new domain. So, It is necessary to find which learned
skills, mapped from source to target task through domain adap-
tation, are admissible for transfer. To answer this question, we
calculate a matching-based fitness for all mapped and learned
skills in target task. The fitness of each skill is defined as a
ratio of its region size in target task to its region size in source
task. If the fitness of a skill is greater than a threshold θ , it is
considered as admissible for transferring, and agent expands
its action-value function to include this skill.

4 EXPERIMENTAL RESULTS
We evaluate the performance of our proposed method, namely
DATLAN , through several experiments. In the following, we
first introduce the test domain and then present the experi-
ments and evaluations on our approach for transfer learning.

We examine our proposed approach using the well-known
grid world domain, named Four Room as illustrated in Fig-
ure 3. The Four Room problem space is four neighbor rooms
which are connected to each other with four doors. The agent’s
discrete state space is shown with grids. In each state four
primitive actions are available: moving up or down, turning
left or right. If doing each action leads to a wall hit, there
is no change in the agent’s state and it stays in its previous
state. Each episode starts from a start state which is chosen
randomly in the start of each episode and finishes when the
agent reaches a goal state, which is fixed in all episodes and
is shown in green in Figure 3. The agent receives a reward -1
for performing each action, -10 for hitting the wall, and +100
for reaching the goal state. Here, To examine our proposed
approach, we use a set of different Four Room problems which
are different in the locations of obstacles and environment’s
state space as illustrated in Figure 3.

In order to evaluate the effectiveness of our approach, we
compare three learners: 1) a standard agent applying SARSA(λ)
with linear function approximation using Fourier basis [26] as
a standard RL method, 2) an agent with the ability of option
learning introduced in [33], named Graph-based Skill Learning
(GSL) agent without using transfer learning, and 3) an agent
using the proposed method, named DATLAN . These agents
are configured as 1000 learning episodes, learner Fourier order
and option Fourier order are 5 and 3, respectively, λ is 0.9 and
α decreases adaptively [15]. It is worth mentioning that like

(a) env1 (b) env2 (c) env3

(d) env4 (e) env5

Figure 3: Four Room environments with different loca-
tions of obstacles and environment’s state space.

the standard agent, both GSL and DATLAN agents use linear
function approximation with Fourier basis. Since each option
covers a subspace of the whole problem space, the Fourier
order of option’s function approximator is smaller than the
agent’s function approximator. Note that the first 10 episodes
of the learning phase ofGSL and DATLAN agents are devoted
to gathering experiences with random policy (ϵ-greedy with
ϵ = 1) in order to construct the connectivity graph and collect
a set of samples used in domain adaptation, respectively. Note
that we use the released source code for the Gradient Reversal
layer as an extension to Caffe [20].1

To examine and appraise our approach DATLAN , we con-
sider four transfer learning scenarios to transfer learned skills
from an environment as source task to a new environment as
target task:

(1) from env1 to env2 : homogeneous TL (adding one room)
(2) from env1 to env3 : homogeneous TL (adding two room)
(3) from env1 to env4 : heterogeneous TL (rotating −90°)
(4) from env1 to env5 : heterogeneous TL (expanding state

space with two additional room)
Figure 4 illustrates the performance of five agents the sce-

narios mentioned above and the results highlight the competi-
tiveness of our methods in terms of the obtained accumulated
rewards during the time to other learners. Besides, Table 1
shows the comparison of three agents in terms of obtained
Return, the average number of steps to reach the goal state and
the average number of interaction needed between agent and
environments to learn the target task. Decreasing the steps
needed to reach the goal state means decreasing interactions of
the agent with the environment and increasing learning speed.
As expected, the agents, which uses skills, (GSL and DATLAN )
learns optimal policies with fewer experiences than the stan-
dard agent. In addition, DATLAN agent needs the fewer inter-
action with the environment since it benefits transfer learning.
For example, GSL and DATLAN agents can respectively learn
1https : //дithub .com/ddtm/caf f e/tr ee/дr l
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Table 1: Comparison of DATLAN ,GSL and SARSA agents
in terms of obtained Return, average number of Steps
to reach goal state and average number of Interaction
between agent and the environment.

DATLAN GSL SARSA

S1

Return 916.72 916.6 916.11
# Steps 83.28 83.4 83.89

# Interactions 141095 448255 653243

S2

Return 906.8 906.41 906.3
# Steps 93.2 93.59 93.7

# Interactions 206715 509037 758677

S3

Return 916.7 916.64 916.15
# Steps 83.3 83.36 83.85

# Interactions 210309 449078 653615

S4

Return 890.3 862.4 836.9
# Steps 109.7 137.6 163.1

# Interactions 482422 761848 857893

env2 in the first scenario with nearly 69% and 22% of the num-
ber of interactions which SARSA agents needs. Similarly, in
the fourth scenario, agents GSL and DATLAN needs nearly
89% and 56% the number of interactions SARSA agents needs
to learn env5, respectively. Since in the fourth scenario the
agent faces heterogeneous transfer learning problem, the ra-
tion of the agentâĂŹs interactions decreasing is less than to
the one in the first scenario where there is a homogeneous
transfer learning problem. The results presented in Figure 4
and Table 1 indicate that DATLAN agent outperforms GSL
one, an agent without utilizing a transfer learning technique,
in terms of mentioned metrics.

In this paper, we use four metrics introduced in [36] to mea-
sure the benefits of transfer: 1) Jumpstart, the improvement of
an agent at the initial performance in a target task, 2) Asymp-
totic Performance, the final performance of a learned agent in a
target task, 3) Transfer Ratio, the ratio of the total accumulated
reward by the agent benefiting transfer learning to the total
accumulated reward by the agent without transfer learning, 4)
Time to threshold: the difference of learning time in terms of
episodes needed by the agent to achieve a pre-specified perfor-
mance level in both source and target tasks. As authors claimed
[36], each metrics has drawbacks and none are sufficient to
fully describe the benefits of any transfer methods. Although
these metrics seems implicitly evident in Figure 4 and Table
1, they are explicitly outlined in Table 2. Note that in calcula-
tion of Time to threshold metric, the asymptotic performance
of GSL agent is defined as threshold. According to Jumpstart
metric, using transfer learning makes DATLAN agent reach
GSL agent’s performance before 500 and 640 episodes respec-
tively in homogeneous and heterogeneous problems, while
GSL agent achieves this after 1000 episodes. The results in-
dicate that DATLAN agent outperforms GSL one, an agent
without utilizing a transfer learning technique, in terms of
these metrics. The results obtained in Table 2 demonstrates

(a) S1: Transferring from env1 to env2

(b) S2: Transferring from env1 to env3

(c) S3: Transferring from env1 to env4

(d) S4: Transferring from env1 to env5

Figure 4: Comparison of learning performance of three
agents: 1) agent with flat policy (Sarsa), 2) GSL agent
with the best configuration as suggested in [33], and 5)
agent using domain adaptation based transfer learning
using an adversarial network (DATLAN ) in the prede-
fined four scenarios.
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Table 2: The average and standard deviation of metrics
(introduced in [36]) for proposed method over 30 inde-
pendent runs.

S1 S2 S3 S4

Jumpstart 1286 2976 679 1264
(±208) (±231) (±357) (±392)

Asymptotic 817.55 697.38 808.39 483.37
performance (±11) (±15) (±19) (±21)
Transfer 13.98% 16.95% 13.86% 15.37%
ratio (±0.01) (±0.02) (±0.02) (±0.01)

Time to 232 441 528 631
threshold (±19) (±31) (±56) (±71)

that DATLAN agent benefits transfer learning to learn target
task better in terms of mentioned metrics.

5 CONCLUSION
In this paper, we proposed a novel domain adaptation based
transfer learning method using Adversarial Networks, named
DATLAN . A DATLAN based agent learns source task by ex-
tracting learned skills as high-level knowledge to be leveraged
in new target task. To do so, it firstly utilizes GSL framework,
which was proposed in [33], to discover abstract skills as high-
level knowledge by constructing connectivity graph as a model
to capture agent’s experiences and the environment’s dynam-
ics. After learning the source task, DATLAN deploys a well-
known domain-adversarial learning named DANN , to find
a feature space where the transition samples collected from
both source and target tasks are related, and consequently
find a given target sample would be located to which learned
skill and assign it the right skill id. Having these mappings
helps the agent to be able to apply skills that are learned previ-
ously in source task into a new but related heterogeneous task.
We examined our method in four scenarios containing a well-
known four-room test domain in RL. The defined scenarios
contain either homogeneous or heterogeneous problems. The
promising results indicate that transferring skills as a high-
level knowledge from the source task to target task by using
domain adaptation technique is lucrative.

In the future, we plan to extend our transfer learning frame-
work to be applicable in continuous domains where the stan-
dard RL methods are restricted by the required learning time
and the curse of dimensionality. Besides, our current trans-
fer learning approach only considers one source. It can be
extended to utilize high-level knowledge from multiple source
domains. One potential solution is to assign different weights
to the learned skills obtained from different tasks based on
their fitness.
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