

Behavioral Cloning in OpenAI using Case-Based Reasoning

Chad Peters and Babak Esfandiari and Sacha Gunaratne and Robert West

Carleton University, Ottawa ON, Canada

Abstract

When learning from observation, and expert agent can be
used to model the desired behavior. In cases when an expert
is not available, we can resort to near-optimal examples as
the source of behavior policies, and judge the accuracy of an
agent on how it learns from the example, regardless of the
proficiency of the demonstration. In this paper we explore a
basic Case-Based Reasoning approach to behavior cloning
using the popular OpenAI Gym environment. We demon-
strate a practical application of the jLOAF framework to mul-
tiple environments, and draw our conclusions from compari-
son and analysis of various learner and sampling strategies
on the overall accuracy of behavior cloning. Our experi-
mental results show how our approach can be used to provide
a baseline for comparison in this domain, as well as identify
the strengths and weaknesses when dealing with environmen-
tal complexity.

 Introduction

This paper describes our work with behavioral cloning in

the OpenAI Gym environment. We approached this prob-

lem by using an agent already trained for near-optimal per-

formance in various virtual environments, generating ob-

servable target behavior, and using a basic Case-Based

Reasoning (CBR) approach to training a new agent with

only the recordings of observable behavior as a reference.

To do this we used the Java Learning from ObservAtion

Framework (jLOAF) to come up with similarity metrics that

are widely known in the research community, easily repeat-

able in other domains, and can serve as a viable baseline for

future performance comparison. Our work with jLOAF and

Gym presented some technical challenges that we had to re-

solve to allow communication between the agent and envi-

ronment.

Our research design involved modeling the inputs and the

outputs between the environment and the CBR system, so

that learning agents can use the observed behavior of other

expert agents already proficient in the target virtual environ-

ment, modify their own behavior based on similarity of

state-action pairs, and resulting with a close approximation

in terms of behavioral cloning.

 A cursory layout of the remainder of this paper is as fol-

lows; first we provide an overview of the related Learning

from Observation (LfO) literature, and the cycle of working

with the CBR system required for an agent’s information

knowledge management. Next, we introduce jLOAF, a

framework that supports learning in autonomous agents

without using direct control by a human supervisor, includ-

ing some previous examples of implementation in a few

problem domains, and discussion of this framework is de-

signed to be extended in its current form to adapt to future

problem domains. The following section provides an intro-

duction to the OpenAI Gym environment, and an architec-

tural overview of our interface layer between the Java Vir-

tual Machine (JVM), and Python Interpreter used by jLOAF

and Gym, respectively. The experimental methodology in-

cludes how the two environments interface, and generation

of recorded observations used to build the base-cases. Last,

we discuss the experimental results and performance evalu-

ations of the selected learning algorithms.

Background

There are a number of ways that intelligent agents can learn

new concepts or ideas, or improve on existing ones. Ma-

chine Learning paradigms can be described in terms of how

the reward function is delivered to the learning agent. In Re-

inforcement Learning, the feedback comes directly from the

environment, and is used to tune a policy function to predict

the expected utility across multiple actions (Sutton & Barto,

2012). In some cases, however, a reward function may not

be directly available; it can be difficult to describe the proper

function when either the human expert does not have per-

sonal experience beyond that of observation, or the problem

domain reaches a level of complexity that is difficult to de-

scribe using a heuristic or programmatic approach. This can

be seen in example of optimal behavior that can only be in-

directly compared to the agent attempting to learn some

function or trajectory given an observed state in the environ-

ment (Ontañón, Montaña, & Gonzalez, 2014). In these types

of scenarios, we can resort to a form of learning commonly

known as Learning from Observation (LfO), where the

actions to be modeled become the examples provided to the

learner.

Learning from Observation

Humans and non-human mammals exhibit the ability to

learn from reinforcement from birth (Friedenberg &

Silverman, 2005), and as intelligent agents, still rely on

some form of feedback (Russell & Norvig, 2009), whether

supervised (by others), or unsupervised (by ourselves) using

a memory-based system of recall.

The concept of Learning from Observation (also known

as Learning from Demonstration), provides an affordance to

teaching intelligent agents by providing sample behaviors to

learn from, and removing the requirement for direct inter-

vention by the researcher. This can be done by presenting

ideal examples of desired behavior to the learning agent, and

through some means of encoding the storage and retrieval

of these examples, the learning agent has the opportunity to

compare its behavior against the optimal example for the

purpose of self correction.

Argall et al.(Argall, Chernova, Veloso, & Browning,

2009) argue that regardless if the environment is physical or

virtual, one needs to encode the agent’s observation before

it can be compared algorithmically, regardless of how the

algorithm is represented. With some careful creation of a

method to transform observations into a policy, and compare

that policy against future actions.

An example implementation that satisfies these require-

ments has been implemented by Floyd and Esfandiari (M W

Floyd & Esfandiari, 2011) in the Java Learning from Obser-

vation Framework (jLOAF). The current1 version of jLOAF

implements LfO through indeterminate inputs, feature se-

lection and filtering, Case Base creation and pruning, and

time-sensitive representation through a method called tem-

poral backtracking (Michael W. Floyd & Esfandiari, 2011).

One well-known paradigm of LfO is through the creation of

state-action pairs, or cases, for use in case-based reasoning,

as described in the following section.

Case Based Reasoning

CBR is an approach to problem solving that takes advantage

of previously experienced situations in order to infer a prob-

able solution to new experiences (Aamodt & Plaza, 1994).

This paradigm differs from other approaches to problem

solving that rely solely on a general understanding of the

problem domain, and instead leverages specific cases that

can be reused in new ways and applied to new experiences.

Aamodt and Plaza describe a number of meth-

ods(Aamodt & Plaza, 1994) that can be used to index, or-

ganize, retrieve, and utilize the information observed in the

past, such as by explar (finding the right class for an unclas-

sified problem), instances (combining cases to form

1 As of this writing, the jLOAF toolset can be accessed at
https://github.com/NMAI-lab

concepts), memory (reasoning through search), analogy (us-

ing a different-but-similar domain), and typical-case-base

(retrieving and adapting similar cases to new problems). De-

spite their subtle differences, all of these CBR methods can

be represented as a cycle with four main phases; Retrieve,

Reuse, Revise, and Retain.

Research Methodology

The goal of this project was to evaluate a basic CBR ap-

proach to behavioral cloning to quickly establish compara-

tive baselines across multiple environments, and which may

later be improved upon with more sophisticated approaches.

In order to test this approach, we selected frameworks pur-

pose built to support Learning from Observation and Rein-

forcement Learning, the ability to establish measurements

of state-action pairs through a sequence of time, and the abil-

ity to encode and transmit this information between the

learning agent and each virtual environment.

We selected the OpenAI research platform as it provides

a standardized interface for agents to observe, interact with,

and receive feedback from a variety of virtual environments.

Although the Gym testbed (an instance of the wider OpenAI

platform) offers a reinforcement value for training agents,

our approach was to train and test an agent using only the

observable behavior of an example (near-)optimal agent al-

ready trained using standard Reinforcement Learning tech-

niques.

We also selected the jLOAF framework to support and

demonstrate the ability to both measure the overall perfor-

mance of various Reasoner classes provided by the frame-

work and use existing case bases generated by jLOAF to in-

teract with the environments in real-time. One could argue

that given the simplicity of the observation space in Gym

that is used to calculate a similarity functions, we could have

directly implemented a simple k-Nearest Neighbor (kNN)

function instead of using a framework running in a separate

environment. However, we decided to turn a potential ob-

stacle into a challenge to overcome for two reasons: First,

the jLOAF library provides an extensive framework that

supports any combination of atomic and complex state-ac-

tion pairs, and scales well to large and complicated environ-

ments. This is important for the support of future environ-

ments that may compound on existing observation spaces.

Second, the jLOAF library provides a test suite to compare

different learning strategies across a range of statistical

measurements. This is important if we wish to run combina-

tions of offline and batch experiments to compare the time

and accuracy trade-offs between different learning agent

strategies.

Our decision to couple jLOAF and Gym presented sev-

eral architectural challenges due to the inherent differences

between jLOAF and Gym, most notably the use of

incompatible runtime environments. jLOAF uses the Java

Virtual Machine, whereas Gym only supports Python2. De-

spite these challenges, we created additional requirements to

ensure the tests remain methodologically sound: First, it

must provide an extensible interface between two disparate

systems without sacrificing usability of either; Second, it

must support both offline and online learning and commu-

nication between agent and environment; and finally, it

must be forwards-compatible with future research projects

based on OpenAI, such as the online Universe API used to

interface with environments hosted remotely.

In order to properly evaluate agents operating in different

environments with unique feature and action spaces, we de-

signed a space-agnostic extension to abstract performance

evaluation interface already available in the jLOAF frame-

work so that each Case Base could be generated, stored, re-

trieved, and evaluated independent of the dimensionality of

the observable environment space reported by Gym.

Our research project demonstrates the application of

jLOAF to an open-ended Reinforcement Learning platform

created by OpenAI (Brockman et al., 2016), and specifically

the Gym environment that is used for tuning and testing re-

inforcement learning agents. The Gym project aims to pro-

vide a standard interface for agents to learn from and act

upon a variety of virtual environments and problem do-

mains. The main goal of the OpenAI project is to provide a

common platform for researchers to compare and discuss

novel reinforcement learning algorithms, and find a gener-

alized solution to allow learning in a variety of domains. Our

use of Gym for LfO is somewhat unique in that we are not

trying to come up with an optimal agent that can beat hu-

mans at the task; instead, we wish to approximate and clone

another agent, regardless of how good or bad the example

may be.

An Overview of jLOAF

The Java Learning from ObservAtion Framework (jLOAF)

used in this study implements the general concepts of a CBR

system through a collection of abstract classes that can be

implemented by an agent to perform Learning by Observa-

tion in various environments. The overall architecture can

be modified and extended, however all implementations

have the following components in common:

Agent: represents to the central organizing construct that

contains implementations of the others in order to observe

the environment, reason about observations, select the most

appropriate action, and perform those actions. The imple-

mented agent class is what the main thread will instantiate

and invoke.

Input: provides a way to encapsulate individual features

that represent the environment. It supports both discrete and

2 Most of the OpenAI Gym environments are dependent on 3rd party librar-
ies using Python 2.7

continuous variables, and can represent Atomic (single fea-

ture) and Complex (Atomic or Complex) representations in

a recursive hierarchy.

Action: can also use Atomic and Complex representa-

tions, and represents the outcome of the agent reasoning pro-

cess, and to interact with the environment.

Similarity: is the metric by which two Inputs are com-

pared to each other. jLOAF provides similarity strategies for

both Atomic and Complex inputs and actions.

Reasoning: is the method by which the agent learns the

behavior of the observed expert, and predicting the next ac-

tion for a given input. There are a number of built-in reason-

ers that use Machine Learning techniques such as Bayesian,

Neural Network, Temporal Backtracking, and K-Nearest

Neighbour.

Performance: provides the template for evaluating how

well an agent learns the target behavior, and performs in new

situations through Cross Validation. Statistical libraries pro-

vide common measurements for comparison, such as Preci-

sion, Recall, and F-Score.

Filters: enable you to tune agent performance through

both feature selection, and case-base optimization. Feature

selection can apply weights to the feature space based on

perceived utility, or ignore them outright. Clustering of the

case-base allows you to reduce the overall size by combin-

ing like-cases, whereas Sampling provides over- and under-

sampling majority and minority classes, respectively.

The OpenAI Gym API

The Gym environment is supported in Python3 2 and 3,

works in both Linux and Windows (the authors have suc-

cessfully used Gym on both platforms), and provides a

standardized interface for each environment. A simple envi-

ronment is instantiated in a python script4 (as shown in Fig-

ure 1), and runs on the local machine of the Gym host.

Figure 1: Example Gym Script

The Gym framework uses a standard agent-environment

loop that steps through a new frame whenever the environ-

ment’s step function is called, and returns a vector of four

values:

Observation (object): the state of the environment, rep-

resented as an array of double values. These values can rep-

resent any number of features, from the position or angle of

3 At the time of this writing, Python 2.7 and 3.6 was supported by the
OpenAI community.
4 Examples from https://gym.openai.com/docs/

an object, to a pixel on the screen. This representation is left

up to the environment creator.

Reward (float): the reinforcement value used for an to

learn in order to maximize the utility of each action. This

value can take different ranges for the completion of each

environment, as well as signal major events, such as enter-

ing a failed state, or achieving a checkpoint required for later

success.

Done (Boolean): returns true if the environment has fin-

ished one round, otherwise always false.

Info (dictionary): a key-value collection that provides ad-

ditional information about the state of the game. The

OpenAI Gym standards do not allow agents to use this in-

formation in order to gain an advantage; rather it can be used

by the researcher for development and debugging.

Problem Classes in Gym

The Gym platform divides the environments into problems

subtypes, depending on a number of factors such as the com-

plexity of the representation, the possible feature-action

space, and the increasing degree of overall difficulty to put

the agent into a “solved” state. Example problem classes in-

clude Search & Optimization for text-based board games,

Classic Control using a joystick or control pad, Atari games

such as Breakout, and Box2D environments that can scale

up for modern displays.

Action and Observation Spaces in Gym

The Gym API also defines the concept of a space5, that al-

lows the calling agent to briefly interrogate the allowable

actions for that environment, as well as the expected range

for each feature in an observation. For example, the Lunar

Lander environment will report a total of four allowable ac-

tions for each thruster, and the expected number range for

features that describe the position, angle, and velocity of

various dimensions. Feature spaces can be a standard unit

vector represented as [-1, +1], or an infinite boundary repre-

sented as [-inf, +inf].

Client-Server Model

The jLOAF-OpenAI interface uses a client-server paradigm

to allow communication between the jLOAF agent running

in a Java Virtual Machine, and the Gym Environment run-

ning in a Python Interpreter VM. We are using Py4J6 to pro-

vide the underlying communication framework.

The Py4J package allows the jLOAF Agent and Gym En-

vironment to communicate with each other through Inter-

Process Communication (IPC) between the two virtual ma-

chines over TCP/IP, and an API for encapsulating the ob-

jects of the corresponding language constructs. This is ac-

complished by opening a socket and binding a port on each

5 https://github.com/openai/gym/blob/master/gym/core.py
6 https://www.py4j.org/

of the Client and Server Gateways for each call between Cli-

ent and Server. The Py4J threading model7 allocates a single

thread for each call, and allows for event listeners and call

backs if needed.

The jLOAF client implements a Py4j.ClientServer bound

to the GymEnv Python server entry point, and the GymEnv

class defines the interface functions and parameters by

which the Java client can remotely create, interrogate, reset,

and shutdown any Gym environment pre-installed on the lis-

tening server.

Experimental Design

As defined in the Research Methodology, we wanted to cap-

ture near-optimal performance in a variety of environments

to be used as the target behavior for observation and emula-

tion. This observed behavior would then be used as the im-

petus for Case-Base creation, and training of a new agent.

The performance testing methodology comprises a num-

ber of scenarios to evaluate the overall accuracy between

three elements: Environments in Gym to provide varying

levels of complexity; Reasoners to train and predict the

agent; and Filtering to optimize the size of the case base.

The following environments were tested to generate sup-

porting enrichment data to describe how the agents learn and

perform:

Classic Control Environments

• CartPole-v1 [4 features, 2 actions]

• MountainCar-v0 [2 features, 3 actions]

2D Box Environments

• LunarLander-v2 [8 features, 4 actions]

The classic control environments were selected as they

provide Complex Inputs and Atomic Actions in a real-time

environment as well as providing a reasonable starting point

for testing. A more advanced example is the “Box2D” envi-

ronment, as it provides a considerably more complex obser-

vation space than Classic Control, and allows for higher dif-

ficulty by forcing agents to start in a randomly generated

starting point.

7 https://www.py4j.org/advanced_topics.html#py4j-threading-and-connec-
tion-model

Figure 2: Lunar Lander Gym Environment

We selected the K-Nearest Neighbour family of similar-

ity strategies for this project, since they map well to the

state-based input-action pairs without adding temporal ele-

ments that may skew initial results. This is important as one

of the main contributions of this research is providing a

baseline that is both simple to measure, easy to replication,

so future researchers using our approach can compare and

contrast more sophisticated and effective LfO strategies.

Our experiments tested the following similarity strate-

gies:

1. ONEKNN using the first nearest neighbour;

2. SimpleKNN using 5 nearest neighbours; and

3. WeightedKNN using weights for nearest neighbours

by proximity to the query.

In order to compare the learning strategies against each

other, we used Cross Validation with 10 slices of pre-gener-

ated results from expert agents in each domain, each slice

containing 1000 cycles of state-action sets. We were also in-

terested in measuring the effects of environmental complex-

ity against each of the learning strategies as each environ-

ment varied in complexity, with different feature ranges and

allowable actions.

Thus, each combination of environment, reasoner, and

filter was run to calculate the mean and standard deviation

of Accuracy, Recall, Precision, and F-Score. The F-Scores

were then aggregated to provide a Global F-Score used to

asses each agent configuration over the space of all possible

actions given the feature representations provided.

Experimental Results

The results were used to compare the change in accuracy for

each of the Reasoning and Filter strategies selected, as well

as their overall effect on the size of the combined Case Base

used for training, and size of the slice being tested against.

Reasoning and Filter Strategies

For the first two environments, being CartPole and Moun-

tainCar (Figure 3), we can see that the results are comparable

between each Reasoning strategy, regardless of the filtering

method used.

Figure 3: Mountain Car F1 scores by Reasoner Strat-

egy and Sampling Methodology

The use of Oversampling (by itself, or combined with

Undersampling the sparse Case space) has the greatest im-

pact on both reducing the Case Base, and subsequently the

accuracy as well. If the loading and seeking time of the Case

Base was a great concern, the Oversampling filtering strat-

egy may be worth the considerable reduction of the number

of Cases.

Case Size and Accuracy

The relationship between Case size for training and testing,

and their impact on the accuracy, can be clearly seen in the

Lunar Lander scenario (Figure 4); the added complexity of

the environment posed a challenge for all of the Reasoning

strategies, however, the impact on accuracy was not as great

when using the Filtering methods.

Figure 4: Lunar Lander trade-off between Filtering and

Accuracy

In this scenario, using both Oversampling the “Support

Vector” between similarity clusters, and Undersampling the

overrepresented space improves both the case size require-

ments (by reducing them), but also slightly improves the

overall accuracy. This may demonstrate the utility of these

filters when dealing with problems in higher dimensions,

and is an area we would like to explore in the future.

0

0.2

0.4

0.6

0.8

1

1.2

ONEKNN(1) SimpleKNN(5) WeightedKNN

MountainCar Global F1

None Under Over Both

0

0.2

0.4

0.6

0.8

0

2000

4000

6000

8000

10000

None Under Over Both

Lunar Lander Avg F1 by Case Sizes

CaseBase Test Avg F1

Visual Observations

In addition to the qualitative methods as discussed, we want

to judge the effectiveness of an agent based on approxima-

tion to the example (teacher) agent, as well as how human-

like the learning behavior. Repeated observations of the

agent operating in Gym environments produced some unu-

sual results, all depending if the Gym environment uses a

random seed to determine where the agent is situated when

the environment is started.

For example, the cartpole and mountain car environments

will start off in the same position, with only minor differ-

ences in whether the pole is leaning slightly to the left or

right. In cases of Oversampling the range of observed teach-

ing behavior, the agent was able to (eventually) self-correct.

However, due to the near-optimal performance of the teach-

ing agent, the learner did not have a chance to observe situ-

ations that forced the example agent to recover from a near-

disaster; in these situations, a similarity function can be used

to some degree of effectiveness to learn how to recover.

Running the learner in simpler environments using a large

case base size, with either no filter or Undersampling, pro-

duced Global F-Scores as high as 0.98. In this scenario, the

learner might be able to fool a human observer into thinking

it is the example agent.

When moving on to more complex environments with a

random seed, the learner behavior diverges from the exam-

ples with a lower chance of recovery. For example, the Lu-

nar Lander Environment not only randomizes the terrain and

landing target, but also supports a difficulty rating; even the

easiest default setting assigns the lander starting locations,

cartesian velocities, and angular momentum (spin) that can

be difficult for event human players to recover from. In sit-

uations when the agent started off in an ideal position and

orientation as the example agent, the learner was able to land

the craft in a similar fashion; however, when the learner had

to recover from difficult scenarios, the outcome was almost

always failure. This failure may be due to the lack of exam-

ples demonstrating how to recover from the variety of pos-

sible scenarios, or not enough simulation time for the learner

to generate cases of successful recover. Additional work in

this area is required to properly explain this phenomenon,

and may include techniques such as Active Case Base gen-

eration (Michael W Floyd & Esfandiari, 2009) as a solution

to these issues.

Conclusion

This study provided a contribution to the study of Case-

Based Reasoning and Learning from Observation by evalu-

ating a basic CBR approach to behavioral cloning using the

popular OpenAI Gym framework. We accomplished this by

demonstrating a practical application of the jLOAF frame-

work to an existing community-driven research platform,

and the creation of a working interface that allows jLOAF

users to leverage OpenAI technologies, while overcoming

various technical hurdles to enable distributed communica-

tions. This research provided a comparison and analysis of

the effects of Over- and Under-Sampling on the overall ac-

curacy across various Reasoning strategies, as well as gen-

erating a series of baseline examples for future comparison.

Future work in this domain may involve an extension of

the testing framework to encapsulate some of the environ-

ment-specific requirements such as 3rd party libraries for

each environment, and possibly porting the jLOAF system

to Python to natively work with OpenAI Universe proxies,

and related research projects with DeepMind.

References

Aamodt, A., & Plaza, E. 1994. Case-Based Reasoning: Founda-
tional Issues, Methodological Variations, and System Approaches.
AI Communications. IOS Press, 7(1), 39–59.

Argall, B. D., Chernova, S., Veloso, M., & Browning, B. 2009. A
survey of robot learning from demonstration. Robotics and Auton-
omous Systems, 57(5), 469–483.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schul-
man, J., Tang, J., & Zaremba, W. 2016. OpenAI Gym. ArXiv, 1–4.

Floyd, M. W., & Esfandiari, B. 2009. An active approach to auto-
matic case generation. In Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics) (Vol. 5650 LNAI, pp. 150–164).

Floyd, M. W., & Esfandiari, B. 2011. A Case-Based Reasoning
Framework for Developing Agents Using Learning by Observa-
tion. Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE
International Conference On, (September), 531–538.

Floyd, M. W., & Esfandiari, B. 2011. Learning state-based behav-
iour using temporally related cases. CEUR Workshop Proceedings,
829(August).

Friedenberg, J., & Silverman, G. 2005. Cognitive Science: An In-
troduction to the Study of Mind. Thousand Oaks, Cal.: Sage Publi-
cations.

Ontañón, S., Montaña, J. L., & Gonzalez, A. J. 2014. A Dynamic-
Bayesian Network framework for modeling and evaluating learn-
ing from observation. Expert Systems with Applications, 41(11),
5212–5226.

Russell, S., & Norvig, P. 2009. Artificial Intelligence: A Modern
Approach, 3rd edition. Prentice Hall.

Sutton, R. S., & Barto, A. G. 2012. Reinforcement learning (2nd
ed., Vol. 2). Cambridge, Massachusetts: The MIT Press.

