
Feudal Multi-Agent Hierarchies
for Cooperative Reinforcement Learning
Sanjeevan Ahilan

Gatsby Computational Neuroscience Unit

University College London

London, United Kingdom

ahilan@gatsby.ucl.ac.uk

Peter Dayan

Max Planck Institute for Biological Cybernetics

Tübingen, Germany

dayan@tue.mpg.de

ABSTRACT
We investigate how reinforcement learning agents can learn to

cooperate. Drawing inspiration from human societies, in which

successful coordination of many individuals is often facilitated by

hierarchical organisation, we introduce Feudal Multi-agent Hierar-

chies (FMH). In this framework, a ‘manager’ agent, which is tasked

with maximising the environmentally-determined reward func-

tion, learns to communicate subgoals to multiple, simultaneously-

operating, ‘worker’ agents. Workers, which are rewarded for achiev-

ing managerial subgoals, take concurrent actions in the world. We

outline the structure of FMH and demonstrate its potential for de-

centralised learning and control. We find that, given an adequate set

of subgoals from which to choose, FMH performs, and particularly

scales, substantially better than cooperative approaches that use a

shared reward function.

KEYWORDS
multi-agent; reinforcement learning; feudal; hierarchies

1 INTRODUCTION
In cooperative multi-agent reinforcement learning, simultaneously-

acting agents must learn to work together to achieve a shared set

of goals. A straightforward approach is for each agent to optimise

a global objective using single-agent reinforcement learning (RL)

methods such as Q-Learning [33] or policy gradients [28, 34]. Un-

fortunately this suffers various problems in general.

First, from the perspective of any one agent, the environment is

non-stationary. This is because as other agents learn, their policies

change, creating a partially unobservable influence on the effect of

the first agent’s actions. This issue has recently been addressed by

a variety of deep RL methods, for instance with centralised training

of ultimately decentralised policies [8, 18]. However, this requires

that the centralised critic or critics have access to the actions and

observations of all agents during training, which may not always

be possible.

A second problem is coordination; agents must learn how to

choose actions coherently, even in environments in which many

optimal equilibria exist [20]. Whilst particularly challenging when

agents are completely independent, such problems can be made

more feasible if a form of communication is allowed [32]. Neverthe-

less, it is difficult for agents to learn how to communicate relevant

information effectively to solve coordination problems, with most

approaches relying on further helpful properties such as a differen-

tiable communication channel [7, 27] and/or a model of the world’s

dynamics [22].

Third, multi-agent methods scale poorly – the effective state

space grows exponentially with the number of agents. Learning a

centralised value function therefore suffers the curse of dimension-

ality, whilst the alternative of decentralised learning often appears

inadequate for addressing non-stationarity. Optimising a global

objective also becomes challenging at scale, as it becomes difficult

to assign credit to each agent [4, 35].

A clue for meeting this myriad of challenges may lie in the way

in which human and animal societies are hierarchically structured.

In particular, even in broadly cooperative groups, it is frequently

the case that different individuals agree to be assigned different

objectives which they work towards for the benefit of the collective.

For example, members of a company typically have different roles

and responsibilities. They will likely report to managers who define

their objectives, and they may in turn be able to set objectives to

more junior members. At the highest level, the CEO is responsible

for the company’s overall performance.

Inspired by this idea, we propose an approach for the multi-agent

domain, which organises many, simultaneously acting agents into

a managerial hierarchy. Whilst typically all agents in a cooperative

task seek to optimise a shared reward, in Feudal Multi-agent Hier-

archies (FMH) we instead only expose the highest-level manager to

this ‘task’ reward. The manager must therefore learn to solve the

principal-agent problem [12] of communicating subgoals, which

define a reward function, to the worker agents under its control.

Workers learn to satisfy these subgoals by taking actions in the

world and/or by setting their own subgoals for workers immediately

below them in the hierarchy.

FMH allows for a diversity of rewards. This can provide indi-

vidual agents with a rich learning signal, but necessarily implies

that interactions between agents will not in general be fully coop-

erative. However, the intent of our design is to achieve collective

behaviours which are apparently cooperative, from the perspective

of an outside observer viewing performance on the task objective.

Our idea is a development of a single-agent method for hierar-

chical RL known as feudal RL [5, 31], which involves a ‘manager’

agent defining subgoals for a ‘worker’ agent in order to achieve

temporal abstraction. Feudal RL allows for the division of tasks into

a series of subtasks, but has largely been investigated with only

one worker per manager acting at any one time. By introducing

a feudal hierarchy with multiple agents acting simultaneously in

FMH, we not only divide tasks over time but also across worker

agents. Furthermore, we embrace the full multi-agent setting, in

which observations are not in general shared across agents.

We outline a method to implement FMH for concurrently act-

ing, communicating agents trained in a decentralised fashion. Our



approach pre-specifies appropriate positions in the hierarchy as

well as a mapping from the manager’s choice of communication to

the workers’ reward functions. We show how to facilitate learning

of our deep RL agents within FMH through suitable pretraining

and repeated communication to encourage temporally extended

goal-setting.

We conduct a range of experiments that highlight the advantages

of FMH. In particular, we show its ability to address non-stationarity

during training, as managerial reward renders the behaviour of

workers more predictable. We also demonstrate FMH’s ability to

scale to many agents and many possible goals, as well as to enable

effective coordination amongst workers. It performs substantially

better than both decentralised and centralised approaches.

2 BACKGROUND
2.1 Markov Decision Processes
Single-agent RL can be formalised in terms of Markov Decision

Processes, which consist of sets of states S and actions A, a re-

ward function r : S × A → R and a transition function T :

S ×A → ∆(S), where ∆(S) denotes the set of discrete probability
distributions over S. Agents act according to a stochastic policy

π : S × A → [0, 1]. One popular objective is to maximise the

discounted expected future reward, defined as Eπ [
∑∞
t=0 γ

t r (st ,at )]
where the expectation is over the sequence of states and actions

which result from policy π , starting from an initial state distribu-

tion ρ0 : S → [0, 1]. Here γ ∈ [0, 1) is a discount factor and t
is the time step. This objective can be equivalently expressed as

Es∼ρπ ,a∼π [r (s,a)], where ρ
π
is the discounted state distribution

induced by policy π starting from ρ0.

2.2 Deterministic Policy Gradient Algorithms
Deterministic policy gradients (DPG) is a frequently used single-

agent algorithm for continuous control using model-free RL [26].

It uses deterministic policies µθ : S → A, whose parameters θ are

adjusted in an off-policy fashion using an exploratory behavioural

policy to perform stochastic gradient ascent on an objective J (θ ) =
Es∼ρ µ ,a∼µθ [r (s,a)].

We can write the gradient of J (θ ) as:

∇θ J (θ ) = Es∼ρ µ [∇θ µθ (s)∇aQ
µ (s,a)|a=µθ (s)]. (1)

Deep Deterministic Policy Gradients (DDPG) [16] is a variant with

policy µ and critic Qµ
being represented via deep neural networks.

Like DQN [21], DDPG stores experienced transitions in a replay

buffer and replays them during training.

2.3 Markov Games
A partially observable Markov game (POMG) [11, 17] for N agents

is defined by a set of states S, and sets of actions A1, ...,AN and

observations O1, ...,ON for each agent. In general, the stochastic

policy of agent i may depend on the set of action-observation

histories Hi ≡ (Oi × Ai )
∗
such that πi : Hi × Ai → [0, 1]. In

this work we restrict ourselves to history-independent stochastic

policies πi : Oi ×Ai → [0, 1]. The next state is generated according

to the state transition function T : S×A1× ...×An → ∆(S). Each
agent i obtains deterministic rewards defined as ri : S ×A1 × ... ×

An → R and receives a private observation oi : S → Oi . There is

an initial state distribution ρ0 : S → [0, 1] and each agent aims to

maximise its own discounted sum of future rewards.

2.4 Centralised and Decentralised Training
In multi-agent RL, agents can be trained in a centralised or decen-

tralised fashion. In decentralised training, agents have access only

to local information: their own action and observation histories

during training [29]. Agents are often trained using single-agent

methods for RL, such as Q-Learning or DDPG.

In centralised training, the action and observation histories of all

agents are used, effectively reducing the multi-agent problem to a

single-agent problem. Although it may appear restrictive for agents

to require access to this full information, this approach has gener-

ated recent interest due to the potential for centralised training of

ultimately decentralised policies [8, 18]. For example, in simulation

one can train a Q-function, known as a critic, which exploits the

action and observation histories of all agents to aid the training of

local policies for each one. These policies can then be deployed in

multi-agent systems in the real world, where centralisation may be

infeasible.

2.5 Multi-Agent Deep Determinstic Policy
Gradients

Multi-agent deep deterministic policy gradients (MADDPG) [18]

is an algorithm for centralised training and decentralised con-

trol of multi-agent systems. It uses deterministic polices, as in

DDPG, which condition only on each agent’s local observations

and actions. MADDPG handles the non-stationarity associated

with the simultaneous adaptation of all the agents by introducing

a separate centralised critic for each agent. Lowe et al., trained

history-independent feedforward networks on a range of mixed

cooperative-competitive environments, significantly improving

upon agents trained independently with DDPG.

3 METHODS
We propose FMH, a framework for multi-agent RL which addresses

the three major issues outlined in the introduction: non-stationarity,

scalability and coordination. In order to increase the generality of

our approach, we do so without requiring a number of potentially

helpful features: access to the observations of all agents (as in

centralised training), a differentiable model of the world’s dynamics

or a differentiable communication channel between agents.

3.1 Hierarchies
We begin by defining the type of hierarchical structure we create for

the agents. In its most straightforward setting, this hierarchy corre-

sponds to a rooted directed tree, with the highest level manager as

the root node and each worker reporting to only a single manager.

Our experiments use this structure, although, for simplicity, using

just two-level hierarchies. However, we also note the possibility, in

more exotic circumstances, of considering more general directed

acyclic graphs in which a single worker reports to multiple man-

agers, and allowing for more than one manager at the highest level

of the hierarchy. Acyclicity prevents potentially disastrous feedback

cycles for the reward.

2



Appropriate assignment of agents to positions in a hierarchy

should depend on the varied observation and action capabilities

of the agents. Agents exposed to key information associated with

global task performance are likely to be suited to the role ofmanager,

whereas agents with more narrow information, but which can act

to achieve subgoals are more naturally suited to being workers. As

we show in our experiments, identifying these differences can often

make assigning agents straightforward. Here, we specify positions

directly, to focus on demonstrating the resulting effectiveness of

the hierarchy. However, extensions in which the hierarchy is itself

learned would be interesting.

3.2 Goal-Setting
In FMH, managers set goals for workers by defining their rewards.

To arrange this, managers communicate a special kind of message

to workers that defines the workers’ reward functions according to
a specified mapping. For example, if there are three objects in a

room, we might allow the manager to select from three different

messages, each defining a worker reward function proportional to

the negative distance from a corresponding object. Our experiments

explore variants of this scheme, imposing the constraint that the

structure of the reward function remain fixed whilst the target is

allowed to change. In this context and task, messages therefore

correspond to ‘goals’ requiring approach to different objects. The

manager must learn to communicate these goals judiciously in

order to solve complex tasks. In turn, the workers must learn how

to act in the light of the resulting managerial reward, in addition to

immediate rewards (or costs) they might also experience.

Since a communicated goal is simply another type of action for

the manager, our approach is consistent with the formalism of a

Manager

Worker 1 Worker 2

Environment

Figure 1: An example of a worker-computed Feudal Multi-
agent Hierarchy with one manager agent and two worker
agents. Worker rewards are goal-dependent and computed
locally, the manager’s reward is provided by the environ-
ment.

(partially-observable) Markov game, for which the reward for agent

i is defined as ri : S × A1 × ... × An → R.
However, the worker’s reward need not be treated as part of

the environment. For instance, each worker agent i could compute

its own reward locally ri : Oi × Ai → R, where Oi includes

the observed goal from the manager. We illustrate this ‘worker-

computed’ interpretation in Fig. 1.

3.3 Pretraining and Temporally Extended
Subgoals

We next consider the issue of non-stationarity. This frequently

arises in multi-agent RL because the policies of other agents may

change in unpredictable ways as they learn. By contrast, in FMHwe

allowmanager agents to determine the reward functions of workers,

compelling the workers towards more predictable behaviour from

the perspective of the manager. However, the same issue applies

at the starting point of learning for workers: they will not yet

have learned how to satisfy the goals. We would therefore expect a

manager to underestimate the value of the subgoals it selects early

in training, potentially leading it sub-optimally to discard subgoals

which are harder for the worker to learn.

Thus, it would be beneficial for worker agents already to have

learned to fulfill managerial subgoals. We address this issue prac-

tically in two steps. First, we introduce a bottom-up ‘pretraining’

procedure, in which we initially train the workers before training

the manager. Although the manager is not trained during this pe-

riod, it still acts in the multi-agent environment and sets subgoals

for the worker agents. As subgoals are initially of (approximately)

equal value, the manager will explore them uniformly. If the set of

possible subgoals is sufficiently compact, this will enable workers

to gain experience of each potential subgoal.

This pretraining does not completely solve the non-stationarity

problem. This is because the untrained manager will, with high

probability, vacillate between subgoals, preventing the workers

under its command from having any reasonable hope of extracting

reward. We therefore want managers not only to try out a variety

of subgoals but also to commit to them long enough that they have

any hope of being at least partially achieved. Thus, the second

component of the solution is a communication-repeat heuristic

for the manager such that goal-setting is temporally extended. We

demonstrate its effectiveness in our experiments.

3.4 Coordination
Multi-agent problems may have many equilibria, and good ones

can only be achieved through effective coordination of agent be-

haviour. In FMH, the responsibility of coordination is incumbent

upon the manager, which exerts control over its workers through its

provision of reward. We show in the simplified setting of a matrix

game, how a manager may coordinate the actions of its workers

(see Suppl. Mat. C, found at
1
).

3.5 FMH-DDPG
FMH provides a framework for rewarding agents in multi-agent

domains, and can work with many different RL algorithms. In

1
https://drive.google.com/file/d/1EhRZydSwCvO1cbN4mdYo8PQne-n2d8xk/view?

usp=sharing

3

https://drive.google.com/file/d/1EhRZydSwCvO1cbN4mdYo8PQne-n2d8xk/view?usp=sharing
https://drive.google.com/file/d/1EhRZydSwCvO1cbN4mdYo8PQne-n2d8xk/view?usp=sharing


		

(a) (b) (c)

Figure 2: Cooperative Communication with 1 listener and 12 landmarks. (a) The speaker (grey circle) sees the colour of the
listener (green circle) , which indicates the target landmark (green square). It communicates a message to the listener at every
time step. Here there are 12 landmarks and the agent trained using FMH has successfully navigated to the correct landmark.
(b) FMH substantially outperforms MADDPG and DDPG. The dotted green line indicates the end of pretraining for FMH. (c)
FMH worker reward and the probability of the manager correctly assigning the correct target to the worker. The manager
learns to assign the target correctly with probability 1.

our experiments, we chose to apply FMH in combination with

the single-agent algorithm DDPG, trained in a fully decentralised

fashion. As we do not experiment with combining FMH with any

other algorithm, we frequently refer to FMH-DDPG simply as FMH.

3.6 Parameter Sharing
We apply our method to scenarios in which a large number of

agents have identical properties. For convenience, when training

using a decentralised algorithm (FMH-DDPG or vanilla DDPG) we

implement parameter sharing among identical agents, in order to

train them efficiently. We only add experience from a single agent

(among those sharing parameters) into the shared replay buffer,

and carry out a single set of updates. We find this gives very similar

results to training without parameter sharing, in which each agent

is updated using its own experiences stored in its own replay buffer

(see Suppl. Mat. A.2).

4 EXPERIMENTS AND RESULTS
We used the multi-agent particle environment

2
as a framework

for conducting experiments to test the potential of our method to

address the issues of non-stationarity, scalability and coordination,

comparing against MADDPG and DDPG.

The RL agents have both an actor and a critic, each corresponding

to a feedforward neural network. We give a detailed summary of

all hyperparameters used in Suppl. Mat. A.1.

4.1 Cooperative Communication
Wefirst experimentwith an environment implemented in Lowe et al.

[18] called ‘Cooperative Communication’ (Figure 2a), in which there

are two cooperative agents, one called the ‘speaker’ and the other

called the ‘listener’, placed in an environment with many landmarks

of differing colours. On each episode, the listener must navigate to

a randomly selected landmark; and in the original problem, both

2
https://github.com/openai/multiagent-particle-envs

listener and speaker obtain reward proportional to the negative

distance
3
of the listener from the correct target. However, whilst the

listener observes its relative position from each of the differently

coloured landmarks, it does not know to which landmark it must

navigate. Instead, the colour of the target landmark can be seen by

the speaker, which cannot observe the listener and is unable tomove.

The speaker can however communicate to the listener at every time

step, and so successful performance on the task corresponds to the

speaker enabling the listener to reach the correct target. We also

note that, although reward is provided during the episode, it is used

only for training agents and not directly observed, which means

that agents cannot simply learn to follow the gradient of reward.

Although this task seems simple, it is challenging for many

RL methods. Lowe et al. [18] trained, in a decentralised fashion, a

variety of single-agent algorithms, including DDPG, DQN and trust-

region policy optimisation [25] on a version of this problem with

three landmarks and demonstrated that they all perform poorly

on this task. Of these methods, DDPG reached the highest level of

performance and so we use DDPG as the strongest commonly used

baseline for the decentralised approach. We also compare our re-

sults to MADDPG, which combines DDPGwith centralised training.

MADDPG was found to perform strongly on Cooperative Commu-

nication with three landmarks, far exceeding the performance of

DDPG.

For our method, FMH, we also utilised DDPG, but reverted to the

more generalizable decentralized training that was previously inef-

fective. Crucially, we assigned the speaker the role of manager and

the listener the role of worker. The speaker can therefore commu-

nicate messages which correspond to the subgoals of the different

coloured landmarks. The listener is not therefore rewarded for go-

ing to the correct target but is instead rewarded proportional to the

negative distance from the speaker-assigned target. The speaker

3
The original implementation used the negative square distance; we found this slightly

worse for all algorithms.

4



Number of Final Reward Epochs until Convergence

Listeners Landmarks FMH MADDPG DDPG CoM FMH MADDPG DDPG

1 3 −6.63 ± 0.05 −6.58 ± 0.03 −14.26 ± 0.07 −17.28 56 24 55

1 6 −6.91 ± 0.07 −6.69 ± 0.06 −18.10 ± 0.07 −18.95 57 66 42

1 12 −7.79 ± 0.06 −15.96 ± 0.09 −19.32 ± 0.11 −19.56 − − 36

3 6 −7.10 ± 0.04 −11.13 ± 0.03 −18.90 ± 0.05 −18.95 77 − 50

5 6 −7.17 ± 0.03 −18.47 ± 0.04 −19.73 ± 0.06 −18.95 79 75 53

10 6 −8.96 ± 0.03 −19.80 ± 0.06 −21.19 ± 0.03 −18.95 − 59 32

Table 1: Performance of FMH, MADDPG and DDPG for versions of Cooperative Communication with different numbers of
listeners and landmarks. Final reward is determined by training for 100 epochs and evaluating the mean reward per episode
in the final epoch. We indicate no convergence with a − symbol. For further details see Sup. Mat. A.6.

itself is rewarded according to the original problem definition, the

negative distance of the listener from the true target.

We investigated in detail a version of Cooperative Communi-

cation with 12 possible landmarks (Figure 2a). FMH performed

significantly better than both MADDPG and DDPG (Figure 2b) over

a training period of 100 epochs (each epoch corresponds to 1000

episodes). For FMH, we pretrained the worker for 10 epochs and

enforced extended communication over 8 time steps (each episode

is 25 time steps).

In Figure 2c, the left axis shows the reward received by the FMH

worker (listener) over training. This increased during pretraining

and again immediately after pretraining concludes. Managerial

learning after pretraining resulted in decreased entropy of com-

munication over the duration of an episode (see Suppl. Mat. A.3),

allowing the worker to optimise the managerial objective more ef-

fectively. This in turn enabled the manager to assign goals correctly,

with the rise in the probability of correct assignment occurring

shortly thereafter (right axis), then reaching perfection.

Our results show how FMH resolves the issue of non-stationarity.

Initially, workers are able to achieve reward by learning to opti-

mise managerial objectives, even whilst the manager itself is not

competent. This learning elicits robust behaviour from the worker,

conditioned on managerial communication, which makes workers

more predictable from the perspective of the manager. This then

enables the manager to achieve competency – learning to assign

goals so as to solve the overall task.

Our implementation of FMH used both pretraining and extended

goal-setting with a communication repeat heuristic. In Suppl. Mat.

A.4, we show that pretraining the worker improved performance on

this task, although even without pretraining FMH still performed

better than MADDPG and DDPG. The introduction of extended

communication is however more critical. In Figure 3 we show the

performance of FMHwith goal-setting over various number of time

steps (and fixed pretraining period of 10 epochs). When there were

no communication repeats (Comm 1), performance was similar to

MADDPG, but introducing even a single repeat greatly improved

performance. By contrast, introducing communication repeats to

MADDPG did not improve performance (see Suppl. Mat. A.5).

4.1.1 Scaling to many agents. We next scaled Cooperative Com-

munication to include many listener agents. At the beginning of an

episode each listener is randomly assigned a target out of all the

Figure 3: Communication sent by the manager is repeated
for extended goal-setting over various numbers of time
steps.

possible landmarks and the colour of each listener’s target is ob-

served by the speaker. The speaker communicates a single message

to each listener at every time step. To allow for easy comparison

with versions of Cooperative Communication with only one lis-

tener, we normalised the reward by the number of listeners. As

discussed in the methods, we shared parameters across listeners

for FMH and DDPG.

In Table 1 we show the performance of FMH, MADDPG and

DDPG for variants of Cooperative Communication with different

numbers of listener agents and landmarks. Consider the version

with 6 landmarks, which we found that MADDPG could solve with

a single listener within 100 epochs (unlike for 12 landmarks). On

increasing the number of listeners up to a maximum of 10, we found

that FMH scales much better thanMADDPG; FMHwas able to learn

an effective policy with 5 listener agents whereas MADDPG could

not. Further, FMH even scaled to 10 listeners, although it did not

converge over the 100 epochs.

To aid interpretation of the reward values in Table 1 we also com-

pare performance to a policy which simply moves to the centroid

of the landmarks. This ‘Centre of Mass’ (CoM) agent was trained

using MADDPG until convergence on a synthetic task in which

reaching the centroid is maximally rewarded, and then evaluated

on the true version of the task. We find that both MADDPG and

5



		

(a) (b) (c) (d)

Figure 4: Cooperative Coordination (a) Three listeners (light grey agents) must move to cover the green landmarks whilst
ignoring the blue landmarks. However, only the speaker (dark grey agent) can see the landmarks’ colours; it communicates
with the listeners at every time step. In this example, FMH agents have successfully coordinated to cover the three correct
targets. (b) FMHperforms significantly better thanMADDPG andDDPG. The dotted green line indicates the end of pretraining
for FMH. (c) Agents trained using FMH cover on average more targets, by the end of the episode, than MADDPG and DDPG (d)
Agents trained using FMH avoid collisions more effectively than MADDPG and DDPG over the duration of an episode.

DDPG do not perform better than the CoM agent when there are

10 listeners and 6 landmarks.

In Figure 5 we show the final state achieved on an example

episode of this version of the task, for agents trained using MAD-

DPG and FMH. After training for 100 epochs, MADDPG listeners

do not find the correct targets by the end of the episode whereas

FMH listeners manage to do so.

  

MADDPG FMH

Figure 5: Scaling Cooperative Communication to 10 listen-
ers with 6 landmarks - final time step on example episode.

4.2 Cooperative Coordination
We then designed a task to test coordination called ‘Cooperative

Coordination’ (Figure 4a). In this task, there are 6 landmarks. At

the beginning of each episode 3 landmarks are randomly selected

to be green targets and 3 blue decoys. A team of 3 agents must

navigate to cover the green targets whilst ignoring the blue decoys,

but they are unable to see the colours of the landmarks. A fourth

agent, the speaker, can see the colours of the landmarks and can

send messages to the other agents (but cannot move). All agents can

see each others’ positions and velocities, are large in size and face

penalties if they collide with each other. The task shares aspects

with ‘Cooperative Navigation’ from [18] but is considerably more

complex due to the greater number of potential targets and the

hidden information.

We apply FMH to this problem, assigning the speaker agent the

role of manager. One consideration is whether the manager, the

worker, or both should receive the negative penalties due to worker

collisions. Here we focus on the case in which the manager only

concerns itself with the ‘task’ reward function. Penalties associ-

ated with collisions are therefore experienced only by the workers

themselves, which seek to avoid these whilst still optimising the

managerial objective.

In Figure 4b we compare the performance of FMH to MADDPG

and DDPG. As with Cooperative Communication, FMH does consid-

erably better than both after training for 150 epochs. This is further

demonstrated when we evaluate the trained policies over a period

of 10 epochs: Figure 4c shows the mean number of targets covered

by the final time step of the episode, for which FMH more than

doubles MADDPG. Figure 4d shows the mean number of collisions

(which are negatively rewarded) during an episode. FMH collides

very rarely whereas MADDPG and DDPG collide over 4 times more

frequently.

We also implement a version of Cooperative Coordination in

which the manager is responsible not only for coordinating its

workers but must also navigate to targets itself. We find that it can

learn to do both roles effectively (see Suppl. Mat. B.2.1).

4.2.1 Exploiting Diversity. One role of a manager is to use the

diversity it has available in its workers to solve tasks more effec-

tively. We tested this in a version of Cooperative Coordination in

which one of the listener agents was lighter than the other two and

so could reach farther targets more quickly.

We trained FMH (without parameter sharing due to the diversity)

on this task and then evaluated the trained policies on a ‘Two-Near,

One-Far’ (TNOF) version of the task in which one target is far away

and the remaining two are close (see Suppl. Mat. B.2.2). We did

this to investigate whether FMH, which was trained on the general

6



problem, had learned the specific strategy of assigning the farthest

target to the fastest agent. We found this this to be true 100 percent

of the time (evaluating over 10 epochs); we illustrate this behaviour

in Figure 6.

		 		

Figure 6: FMH solves the TNOF task (example episode). Left:
Agents are initialised at the bottom of the environment, two
targets are close by, and one far away. Right: By the end of
the episode, the faster (red) agent covers the farther target
on the right (whilst avoiding collisions), despite starting on
the left.

5 DISCUSSION
We have shown how cooperative multi-agent problems can be

solved efficiently by defining a hierarchy of agents. Our hierar-

chy was reward-based, with a manager agents setting goals for

worker agents, whilst itself optimising the overall task objective.

Our method, called FMH, was trained in a decentralised fashion

and showed considerably better scaling and coordination than both

centralised and decentralised methods that used a shared reward

function.

Our work was partly inspired by the feudal RL architecture (FRL)

[5], a single-agent method for hierarchical RL [1] which was also

developed in the context of deep RL by Vezhnevets et al. [31]. In par-

ticular, FMH addresses the ‘too many chiefs’ inefficiency inherent to

FRL, namely that each manager only has a single worker under its

control. A much wider range of management possibilities and bene-

fits arises when multiple agents operate at the same time to achieve

one or more tasks [3]. We focused on the cooperative setting [24];

however, unlike the fully-cooperative setting, in which all agents

optimise a shared reward function [2] our approach introduces a

diversity of rewards, which can help with credit-assignment [4, 35]

but also introduces elements of competition. This competition need

not always be deleterious; for example, in some cases, an effective

way of optimising the task objective might be to induce competition

amongst workers, as in generative adversarial networks [9].

We followed FRL (though not all its successors; [31] in isolating

the workers from much of the true environmental reward, making

them focus on their own narrower tasks. Such reward hiding was

not complete – we considered individualised or internalised costs

from collisions that workers experienced directly, such that their

reward was not purely managerially dependent. A more complete

range of possibilities for creating and decomposing rewards be-

tween managers and workers when the objectives of the two are

not perfectly aligned, could usefully be studied under the aegis of

principal-agent problems [12, 15].

Goal-setting in FMH was achieved by specifying a relationship

between the chosen managerial communication and the resulting

reward function. The communication was also incorporated into

the observational state of the worker; however, the alternative

possibility of a goal-embedding would be worth exploring [31].

We also specified goals directly in the observational space of the

workers, whereas Vezhnevets et al. specified goals in a learned

hidden representation. This would likely be of particular value for

problems in which defining a set of subgoals is challenging, such as

those which require learning directly from pixels. More generally,

work on the way that agents can learn to construct and agree upon

a language for goal-setting would be most important.

To train our multi-agent systems we leveraged recent advances

in the field of deep RL; in particular the algorithmDDPG [16], which

can learn in a decentralised fashion. Straightforward application

of this algorithm has been shown to achieve some success in the

multi-agent domain [10] but also shown it to be insufficient in

handlingmore complexmulti-agent problems [18]. By introducing a

managerial hierarchy, we showed that FMH-DDPGhas the potential

to greatly facilitate multi-agent learning whilst still retaining the

advantage of decentralised training. Our proposed approach could

also be combined with centralised methods, and this would be

worth further exploration.

Other work in multi-agent RL has also benefitted from ideas

from hierarchical RL. The MAXQ algorithm [6] has been used to

train homogenous agents [19], allowing them to coordinate by com-

municating subtasks rather than primitive actions, an idea recently

re-explored in the context of deep RL [30]. A meta-controller which

structures communication between agent pairs in order to achieve

coordination has also been proposed [14] (and could naturally be

hybridized with FMH), as well as the use of master-slave archi-

tecture which merges the actions of a centralised master agent

with those of decentralised slave agents [13]. Taken together, these

methods represent interesting alternatives for invoking hierarchy

which are unlike our primarily reward-based approach.

There are a number of additional directions for future work.

First, the hierarchies used were simple in structure and specified in

advance, based on our knowledge of the various information and

action capabilities of the agents. It would be interesting to develop

mechanisms for the formation of complex hierarchies. Second, in

settings in which workers can acquire relevant task information,

it would be worthwhile investigating how a manager might in-

centivise them to provide this. Third, it would be interesting to

consider how a manager might learn to allocate resources, such

as money, computation or communication bandwidth to enable

efficient group behaviour. Finally, we did not explore how man-

agers should train or supervise the workers beneath them, such

as through reward shaping [23]. Such an approach might benefit

from recurrent networks, which could enable managers to use the

history of worker performance to better guide their learning.

7



6 ACKNOWLEDGEMENTS
We would like to thank Heishiro Kanagawa, Jorge A. Menendez

and Danijar Hafner for helpful comments on a draft version of the

manuscript. Sanjeevan Ahilan received funding from the Gatsby

Computational Neuroscience Unit and the Medical Research Coun-

cil. Peter Dayan received funding from the Max Planck Society.

REFERENCES
[1] Andrew G Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical

reinforcement learning. Discrete event dynamic systems 13, 1-2 (2003), 41–77.
[2] Craig Boutilier. 1996. Planning, learning and coordination in multiagent decision

processes. In Proceedings of the 6th conference on Theoretical aspects of rationality
and knowledge. Morgan Kaufmann Publishers Inc., 195–210.

[3] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive

survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
And Cybernetics-Part C: Applications and Reviews, 38 (2), 2008 (2008).

[4] Yu-Han Chang, Tracey Ho, and Leslie P Kaelbling. 2004. All learning is local:

Multi-agent learning in global reward games. In Advances in neural information
processing systems. 807–814.

[5] Peter Dayan and Geoffrey E Hinton. 1993. Feudal reinforcement learning. In

Advances in neural information processing systems. 271–278.
[6] Thomas G Dietterich. 2000. Hierarchical reinforcement learning with the MAXQ

value function decomposition. Journal of Artificial Intelligence Research 13 (2000),

227–303.

[7] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and Shimon White-

son. 2016. Learning to communicate with deep multi-agent reinforcement learn-

ing. In Advances in Neural Information Processing Systems. 2137–2145.
[8] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[9] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In Advances in neural information processing systems. 2672–2680.
[10] Jayesh KGupta,Maxim Egorov, andMykel Kochenderfer. 2017. Cooperativemulti-

agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems. Springer, 66–83.

[11] Junling Hu, Michael P Wellman, et al. 1998. Multiagent reinforcement learning:

theoretical framework and an algorithm.. In ICML, Vol. 98. Citeseer, 242–250.
[12] Michael C Jensen and William H Meckling. 1976. Theory of the firm: Managerial

behavior, agency costs and ownership structure. Journal of financial economics 3,
4 (1976), 305–360.

[13] Xiangyu Kong, Bo Xin, Fangchen Liu, and Yizhou Wang. 2017. Revisiting the

Master-Slave Architecture in Multi-Agent Deep Reinforcement Learning. arXiv
preprint arXiv:1712.07305 (2017).

[14] Saurabh Kumar, Pararth Shah, Dilek Hakkani-Tur, and Larry Heck. 2017. Feder-

ated Control with Hierarchical Multi-Agent Deep Reinforcement Learning. arXiv
preprint arXiv:1712.08266 (2017).

[15] Jean-Jacques Laffont and David Martimort. 2009. The theory of incentives: the
principal-agent model. Princeton university press.

[16] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with

deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).
[17] Michael L Littman. 1994. Markov games as a framework for multi-agent rein-

forcement learning. In Machine Learning Proceedings 1994. Elsevier, 157–163.
[18] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor

Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive

environments. In Advances in Neural Information Processing Systems. 6379–6390.
[19] Rajbala Makar, Sridhar Mahadevan, and Mohammad Ghavamzadeh. 2001. Hierar-

chical multi-agent reinforcement learning. In Proceedings of the fifth international
conference on Autonomous agents. ACM, 246–253.

[20] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-

dent reinforcement learners in cooperative markov games: a survey regarding

coordination problems. The Knowledge Engineering Review 27, 1 (2012), 1–31.

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

Nature 518, 7540 (2015), 529.
[22] Igor Mordatch and Pieter Abbeel. 2018. Emergence of grounded compositional

language in multi-agent populations. In Thirty-Second AAAI Conference on Artifi-
cial Intelligence.

[23] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under

reward transformations: Theory and application to reward shaping. In ICML,
Vol. 99. 278–287.

[24] Liviu Panait and Sean Luke. 2005. Cooperative multi-agent learning: The state of

the art. Autonomous agents and multi-agent systems 11, 3 (2005), 387–434.
[25] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

2015. Trust region policy optimization. In International Conference on Machine
Learning. 1889–1897.

[26] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In ICML.
[27] Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learning multiagent communica-

tion with backpropagation. In Advances in Neural Information Processing Systems.
2244–2252.

[28] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.

Policy gradient methods for reinforcement learning with function approximation.

In Advances in neural information processing systems. 1057–1063.
[29] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative

agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[30] Hongyao Tang, Jianye Hao, Tangjie Lv, Yingfeng Chen, Zongzhang Zhang, Hang-

tian Jia, Chunxu Ren, Yan Zheng, Changjie Fan, and Li Wang. 2018. Hierarchical

DeepMultiagent Reinforcement Learning. arXiv preprint arXiv:1809.09332 (2018).
[31] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max

Jaderberg, David Silver, and Koray Kavukcuoglu. 2017. FeUdal Networks for

Hierarchical Reinforcement Learning. In International Conference on Machine
Learning. 3540–3549.

[32] Nikos Vlassis. 2007. A concise introduction to multiagent systems and distributed

artificial intelligence. Synthesis Lectures on Artificial Intelligence and Machine
Learning 1, 1 (2007), 1–71.

[33] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[34] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for

connectionist reinforcement learning. Machine learning 8, 3-4 (1992), 229–256.

[35] David H Wolpert and Kagan Tumer. 2002. Optimal payoff functions for members

of collectives. In Modeling complexity in economic and social systems. World

Scientific, 355–369.

8



A EXPERIMENTAL RESULTS
A.1 Parameter settings
In all of our experiments, we used the Adam optimizer with a

learning rate of 0.001 and τ = 0.01 for updating the target networks.

γ was 0.75. The size of the replay buffer was 10
7
and we updated the

network parameters after every 100 samples added to the replay

buffer. We used a batch size of 1024 episodes before making an

update. For our feedforward networks we used two hidden layers

with 256 neurons per layer.We trainedwith 10 random seeds (except

otherwise stated).

Hyperparameters were optimised using a line search centred

on the experimental parameters used in [18]. Our optimised pa-

rameters were found to be identical except for a lower value of γ
(0.75) and of the learning rate (0.001), and a larger replay buffer

(10
7
). We found these values gave the best performance for both

MADDPG and FMH on a version of Cooperative Communication

with 6 landmarks evaluated after 50 epochs (an epoch is defined to

be 1000 episodes).

A.2 Parameter Sharing
We implemented parameter sharing for the decentralised algo-

rithms DDPG and FMH. To make training results approximately

similar to implementations which do not use parameter sharing

we restrict updates to a single agent and add experience only from

a single agent to the shared replay buffer (amongst those sharing

parameters). We find in practice that both approaches give very sim-

ilar results for FMH, whereas parameter sharing slightly improves

the performance of DDPG – we show this for a version of Coop-

erative Communication with 3 listeners and 6 targets (Figure S1).

In general sharing parameters reduces training time considerably,

particularly as the number of agents scales.

Figure S1: Parameter sharing does not affect performance
for FMH but slightly improves DDPG.

A.3 Entropy of Communication
We show the change in entropy of communication over the duration

of an episode for the various algorithms (Figure S2). Agents are

trained on Cooperative Communication with 12 landmarks and a

single listener. As the target does not change during the middle of

an episode, we expect the entropy to decrease as agents learn.

For FMH, during pretraining, entropy is high as all goals are sam-

pled approximately uniformly (but with enforced extended com-

munication over 8 time steps). However, shortly after pretraining

ends the entropy of managerial communication rapidly decreases.

This is in contrast to MADDPG which decreases in entropy more

steadily.

Figure S2: Entropy of managerial communication over the
duration of an episode at different stages in training

A.4 Pretraining
Agents trained using FMH were pretrained for 10 epochs across all

experiments. During pretraining all agents act in the multi-agent

environment. Although all experiences are added appropriately

into the replay buffers, the manager does not update its parameters

during pretraining whereas the workers do.

We show the benefits of pretraining on Cooperative Commu-

nication with 12 landmarks and a single listener agent in Figure

S3.

Figure S3: Pretraining improves FMH, although agents can
still learn effectively without it. We use extended communi-
cation (goal-setting) for 8 time steps.

9



A.5 Extended Communication
In the main text we showed that extended goal-setting in FMH

lead to substantially improved performance. We also considered

whether a similar approach would benefit methods which do not

treat communication as goals.

We found that extended communication did not help MADDPG

on the same task, with learning curves being in all cases virtually

identical (Figure S4).

Figure S4: Extended communication does not significantly
improve the performance of MADDPG.

A.6 Further details on Table 1
Values in the table were determined using 10 random seeds in all

cases, except for the one exception of MADDPG with 10 listeners

and 6 landmarks, which used 3 random seeds (training time is

substantially longer as we do not share parameters). The CoM

agent was trained on the synthetic task with different numbers

of landmarks. Performance of the trained CoM policies was then

evaluated over a period of 10 epochs on the corresponding true

tasks.

Convergence was determined by comparing the mean perfor-

mance in the final 5 epochs with the mean performance of a sliding

window 5 epochs in width (we also take the mean across random

seeds). If the mean performance within the window was within 2

percent of the final performance, and remained so for all subsequent

epochs, we defined this as convergence, unless the first time this

happened was within the final 10 epochs. In such a case, we define

the algorithm as not having converged. For assessing the exact time

of convergence in the case of FMH we report values which include

the 10 epochs of pretraining.

A.7 Cooperative Communication with 3
landmarks

For reference we show performance of the various algorithms on

Cooperative Communication with 3 landmarks. Both MADDPG

and FMH perform well on this task, although MADDPG reaches

convergence more rapidly (Figure S5).

Figure S5: Cooperative Communication with 1 listener and
3 landmarks.

B ENVIRONMENTS
B.1 Cooperative Communication
We provide further details on our version of Cooperative Com-

munication (see main text for original description). In general, we

keep environment details the same as Lowe et al., including the

fact that the manager only has access to the target colour. However,

we also scale up the number of coloured landmarks, which we do

by taking the RGB values provided in the multi-agent particle en-

vironment, [0.65, 0.15, 0.15], [0.15, 0.65, 0.15], [0.15, 0.15, 0.65], and

adding 9 more by placing them on the remaining vertices of the

corresponding cube and at the centre-point of four of the faces (in

RGB space).

The particular colour values used for the landmarks influences

the performance of RL algorithms as landmarks which have similar

colours are harder for the speaker to learn to distinguish.

B.2 Cooperative Coordination
We provide further details on our version of Cooperative Coordi-

nation (see main text for original description). The task provides

a negative reward of -1 to each agent involved in a collisions. For

DDPG and MADDPG this penalty is shared across agents, whereas

in FMH only the agents involved in the collision experience this

penalty.

We also evaluated performance of trained policies in Figures 4c

and 4d with slight modifications to the overall task. In the case of

Figure 4c, to ensure that targets were never impossible to achieve

by overlapping with the immobile manager, we moved the manager

off-screen. For Figure 4d we ensured that agent positions were never

initialised in a way such that they would automatically collide (such

cases are rare).

B.2.1 Coordination with a mobile manager. We implemented a

version of Cooperative Coordination with 2 listeners and 1 speaker

which together need to cover the 3 green targets. The manager

must multi-task, directing workers to the correct targets whilst also

covering these targets itself. We find that the manager learns to do

this, outperforming both MADDPG and DDPG (Figure S6)

10



Figure S6: FMH performs well, even when the manager is
required to move to cover targets whilst also setting goals
for workers

B.2.2 The Two-Near, One-Far Task. This task is not used for

training but to evaluate the performance of agents trained on a

version of Cooperative Coordination in which one agent is twice

as light as normal and the remaining two are twice as heavy.

Evaluating the optimal assignments on this task can be difficult,

so we assess it in the more easily interpreted TNOF environment.

In TNOF, the agents start at the bottom of the environment. Two

green targets are located nearby (in bottom 40 percent of screen)

whereas one target is far away (in top 30 percent of screen). The x-

coordinates are randomly sampled at the beginning of each episode

and blue decoys are also added (one nearby, two far).

C SOLVING A COORDINATION GAME
Some of the most popular forms of multiagent task are coordination

games from microeconomics in which there are multiple good

and bad Nash equilibria, and it is necessary to find the former.

It is intuitively obvious that appointing one of the agents as a

manager might resolve the symmetries inherent in a cooperative

coordination game in which agents need to take different actions

to receive reward:

Player Y

A B

Player X
A (0, 0) (1, 1)

B (1, 1) (0, 0)

This game has two pure strategy Nash equilibria and one mixed

strategy Nash equilibrium which is Pareto dominated by the pure

strategies. The challenge of this game is for both agents to choose

a single Pareto optimal Nash equilibrium, either (A,B) or (B,A).

For a matrix game, we define the feudal approach as allowing Player

X , the manager, to specify the reward player Y will receive for its

actions. This is a simplification when compared to the more general

setting of a Markov game in which the feudal manager can reward

not only actions but also achievement of certain states.
4
. In order to

specify the reward, we assume that Player X communicates a goal,

either дA or дB , prior to both players taking their actions. If Player

X sends дA it means that actionA is now rewarded for Player Y and

action B is not. Player X ’s rewards are unchanged, and so together

this induces the following matrix game:

Player Y

A B

Player X
A (0, 1) (1, 0)

B (1, 1) (0, 0)

Action A for player Y is now strictly dominant and so a rational

Player Y will always choose it. By iterated elimination of strictly

dominated strategies we therefore find the resulting matrix game:

Player Y

A

Player X
A (0, 1)

B (1, 1)

And so a rational Player X will always choose B, resulting in an

overall strategy of (B,A) conditioned on an initial communication

of дA. By symmetry, we can see that conditioned on дB , rational
players X and Y will play (A,B). The feudal approach therefore

allows the manager to flexibly coordinate the pair of agents to either

Nash equilibrium. For games involving N players, coordination can

be achieved by the manager sending out N-1 goals.

4
Typically we prefer the manager to choose distal states as targets rather than actions

as this requires the manager to micromanage less and so supports temporal abstraction

11


	Abstract
	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 Deterministic Policy Gradient Algorithms
	2.3 Markov Games
	2.4 Centralised and Decentralised Training
	2.5 Multi-Agent Deep Determinstic Policy Gradients

	3 Methods
	3.1 Hierarchies
	3.2 Goal-Setting
	3.3 Pretraining and Temporally Extended Subgoals
	3.4 Coordination
	3.5 FMH-DDPG
	3.6 Parameter Sharing

	4 Experiments and Results
	4.1 Cooperative Communication
	4.2 Cooperative Coordination

	5 Discussion
	6 Acknowledgements
	References
	A Experimental Results
	A.1 Parameter settings
	A.2 Parameter Sharing
	A.3 Entropy of Communication
	A.4 Pretraining
	A.5 Extended Communication
	A.6 Further details on Table 1
	A.7 Cooperative Communication with 3 landmarks

	B Environments
	B.1 Cooperative Communication
	B.2 Cooperative Coordination

	C Solving a Coordination Game

