Pareto-DQN: Approximating the Pareto front in complex
multi-objective decision problems

Mathieu Reymond
Vrije Universiteit Brussel
Brussels, Belgium
mreymond@ai.vub.ac.be

ABSTRACT

In many real-world problems, one needs to care about multiple
objectives. These objectives can be contradicting and, depending
on the decision maker, the different compromises will be ranked
differently. In this preliminary work, we propose a novel algorithm:
Pareto-DQN, that will estimate the Pareto front of complex environ-
ment, with a high-dimensional state-space. As a proof-of-concept,
we successfully apply our algorithm to the Deep-Sea-Treasure en-
vironment, a well known Multi-objective reinforcement learning
benchmark.

KEYWORDS

Reinforcement Learning; Deep Reinforcement Learning; Multi-
objective Reinforcement Learning

1 INTRODUCTION

Many real-world decision problems require to cope with multiple,
possibly contradicting objectives. When investing in the stock mar-
ket, for example, one typically wants to execute a strategy that
will maximize profit, while at the same time incur no risk of losing
the investment. This is often not possible and, depending on the
decision maker, the relative importance of each objective varies. As
opposed to single-objective optimization, e.g., maximizing one’s
score on Atari’s Breakout game, no single best solution can be
found for these multi-objective problems. Instead, we deal with
a set of possible compromises. Each member of this set is called
non-dominated when no single objective can be improved without
harming the other ones. The set of all non-dominated solutions for
a particular problem is called the Pareto front.

In this paper, we will describe how we will estimate the Pareto
front for complex, high-dimensional multi-objective problems so
that it can be used by the decision maker to execute an informed
strategy.

A straightforward approach to multi-objective optimization is
to scalarize the different criteria, effectively reducing the problem
to a single-objective one. Most often, a weighted sum over the
objectives is used [1, 7, 8] but, as this only allow for solutions on
the convex parts of the Pareto front [2], non-linear scalarizations
have been investigated too [18]. As a downside, the weights of the
scalarization function need to be decided upon a priori to reflect
the type of solution desired. First of all these weights might not
reflect the true preference of the user. Moreover, this approach
suffers from instability, as a small change in weights might lead to
drastically different solutions [15].

Another method is to search for the Pareto front, and let the
decision maker choose its preferred solution a posteriori. This is

Ann Nowé
Vrije Universiteit Brussel
Brussels, Belgium

preferred, as the solutions on the Pareto front directly capture the
trade-offs between the objectives. However, the downside of this
approach is that it comes at a higher computational cost.

One algorithm that directly tries to find the Pareto front is called
Pareto-Q-Learning (PQL) [19], and extends the classic Q-learning
algorithm [22]. However, like Q-learning, PQL can only perform in
an environment with a small-sized state-space. Currently, much of
the work done in Multi-Objective Reinforcement Learning has been
performed in a low-dimensional (although sometimes continuous)
state-space setting [5, 10, 12, 16, 21]. In contrast, single-objective
Reinforcement Learning is able to operate well in complex, high-
dimensional problems, sometimes exceeding human-level perfor-
mance [9, 13, 20]. The incorporation of Deep Learning techniques
as a means of scalability towards high-dimensional state-spaces
plays a major role to this success, with as one of the first notable
examples Deep Q-Networks (DQN) [6].

Inspired by PQL, we will extend the DQN algorithm to cope
with multiple objectives. For each state-action pair, our algorithm,
denoted Pareto-DQN (PDQN), will output the corresponding Pareto
front, instead of the scalar Q-values that DQN would predict. We
will show preliminary results of our method on two different exper-
iments: one proof-of-concept, standard multi-objective benchmark,
and another one characterized by a high-dimensional state-space.

2 BACKGROUND

In order to explain PDQN, we will first elaborate the DQN and PQL
algorithms.

2.1 Reinforcement Learning

Reinforcement learning (RL) [14] is a machine learning technique
that allows an agent to learn by trial-and-error while interacting
with an environment, given some numerical feedback known as a
reward signal. The environment is modelled as a Markov decision
process (MDP) M = (S, A, T,y,R) [11], where S, A are the state and
action spaces, T: S X A X S — [0, 1] is a probabilistic transition
function, y is a discount factor determining the importance of future
rewards and R: S X AX S — R is the immediate reward function.
The reinforcement learning agent needs to learn a policy 7, i.e. a
mapping between states and actions that maximizes the discounted
sum of received rewards, i.e., returns.

The Q-learning algorithm [22] iteratively approximates the ex-
pected returns using the following update-rule:

Q(s,a) = Q(s,a) + a(R(s, a,s") +y max Q(s", a")) 1)

For many real-world problems the state-space becomes too large
to keep track of all the Q-values. To alleviate this issue, the DQN

algorithm approximates those high-dimensional states by feeding
them to a neural network, which outputs Q-values for these approxi-
mations. The network is trained by performing gradient descent, us-
ing a Mean-Squared Error loss with R(s, a,s”) + y maxge4 O(s”, a’)
as target. However, the non-stationarity of the target Q-function
introduces instability in training.

DON tackles this problem by including a target network Q and an
experience-replay buffer. Executed transitions (s¢, as, 1+, St+1) are
collected by the experience-replay buffer D, which is then uniformly
sampled to generate training batches. Additionally, Q is used to
estimate the target Q-values, resulting in the following update-rule:

L) = E(s, a,r,s’)~U(D) [(r+y g}g—fx Q(s/’ a,) = Q(s, a))Z] 2

Where 0 are the parameters of the Q-network. Finally, the weights
of the Q-network are periodically copied to the target network.

2.2 Multi-objective Reinforcement Learning

In single-objective RL algorithms, the agent is given a scalar reward
for each performed action. Instead, Multi-objective RL (MORL)
possesses a vectorial reward function R: SXAX S — R4, where
d is the number of objectives. Thus, the expected return is also in
vectorial form, which means we cannot straightforwardly apply the
classic Q-update rule, as the maximum of a set of vectors is unclear,
e.g., two distinct non-dominated returns might have a different
priority depending on the user.

As such, Roijers et al. [12] define two main approaches towards
MORL algorithms: the outer-loop and the inner-loop method. In the
outer-loop approach, a single-objective RL algorithm is repeatedly
applied on a different scalarization of the reward function. We then
keep track of all the discovered policies that lead to non-dominated
returns. As opposed to that, the inner-loop method modifies the
workings of a single-objective algorithm to use set-operations and
prune away dominated solutions.

This is the approach taken by PQL. For each state-action pair,
a set of non-dominated solutions is kept (initially empty), which
is updated using the non-dominated set of the next state over all
possible actions. More formally, the set of expected returns for a
state-action pair is defined as:

Qset(s,a) « R(s,a) ® yND,(s, a) (3)

where R is the average immediate reward, ND; is the set of non-
dominated future returns and @ is a vector-sum operation (R is thus
added to each element of ND;). As opposed to Q-learning, where a
scalar Q-value is updated using another scalar (max g c4 Q(s’, a’)),
PQL updates a set of Q-vectors with another set. However, it is
unclear which element of Qg (s, a) to update with which element
ins’. To cope with this lack of correspondence between the elements
of different Qs¢;’s, we keep track of both Rand ND; separately (for
more details, we refer to the work of Van Moffaert and Nowé [19]).
Qset(s, a) can then be reconstructed at any time, using equation 3.
As ND; represents the future returns, it is updated using the non-
dominated set of all the Qse;’s of the next state:

ND¢(s,a) & ND(UgeaQset(s’, a’)) (4)
Or, equivalently:

NDy(s,a) < ND(UgcaR(s’,a’) ® yND,(s',a’)) (5)
Where NDis a func_tion that removes all dominated vectors from
the set. Additionally, R is updated using:

R(s,a) — R(s, a) ©)
n(s, a)

Where n(s, a) returns the number of times a was performed in s.

The Q-update rule has thus been modified to cope with vectorial
rewards. However, the action-selection mechanism (typically e-
greedy) also depends on the Q-values. To apply such a mechanism
on PQL, an indicator-measure will be applied to assess the quality of
agiven Qse;. The hypervolume is one such an indicator: it computes
the total volume under all the points in Qs for a given reference
point. The greedy policy then chooses the action with the highest
hypervolume.

R(s,a) < R(s, a) +

3 METHOD

Similarly to classic Q-learning, the main issue with PQL lies in
the need to keep a set of non-dominated points for each possible
state-action pair. As this is an unrealistic assumption, we will use
a neural network to approximate the Pareto front. Moreover, an-
other approximator will be used to estimate the average immediate
reward. We will combine the additions proposed by DON to scale
towards high-dimensional state-spaces as well as the modifications
on the update-rule and action-selection mechanisms used in PQL
with a novel way estimate the Pareto front into a new algorithm:
Pareto-DQN.

3.1 Estimating the immediate reward

As we need to keep track of the immediate average reward R sep-
arately, we will approximate the function with a neural network.
Given a state and an action as inputs, it will output a vector r € Rd,
corresponding to the estimated reward. Contrary to Q-values, the
immediate reward is a stationary target. Therefore, we will thus
omit a separate target network and directly update the current
network with the perceived rewards. Due to the nature of backprop-
agation, the output for a given state-action pair will automatically
be the average reward after convergence.

3.2 Estimating the non-dominated set

Next to R, we will approximate ND;. Due to this set being of a
variable size, i.e., it contains a different number of non-dominated
returns depending on the state, we cannot simply use state-actions
as inputs and output a fixed number of points. Even if we bounded
the set to the p best points, the ordering of these points would
matter. Indeed, in order to appropriately update the network, each
output neuron needs to be compared with the same target-value
(provided the input is the same). A change of ordering would result
in a change of target and thus hinder training. However, keeping
track of this ordering is not a viable solution: each time a new
non-dominated point is discovered (and this is state-dependent), an
existing one should be removed, resulting in a change of ordering.

To cope with these issues, we use a network that not only takes
a state and action as input, but d — 1 additional values o1 ...04_1,
corresponding to all but the last objective. The output is then the

predicted value for the remaining objective o4. Combining o4 with
the inputs 01 ...04_; thus yields a single point for (s, a) in R,
Adding R(s, a) to that point (equation 3) results in a single point
on the Pareto front. Approximating the whole Pareto front is then
performed by sampling p points from R4~ predicting oy for each
sample using the ND;(s, a) predictor, and then appending those
predictions to their corresponding o; . ..04_1 point.

However, there are some implications resulting from this archi-
tecture. First of all, the Pareto front of some states might only span
over a subdomain of R4~!, This subdomain is, however, unknown,
meaning we will always sample from the whole R9~! domain and
make predictions for points that cannot possibly exist on the Pareto
front. This limitation is overcome by training our predictor to out-
put values worse than the smallest possible reward for these points
(see figure 1a). Moreover, we observed that only updating the net-
work with newly discovered non-dominated points lead to unstable
behavior, as these updates would affect the predictions for other
points. As a result, the entire Pareto front is always updated, by
using the predictions of those other points as their own targets, to
enforce them to remain unchanged.

Nevertheless, there are two cases where points need to be artifi-
cially added to cover the whole R%~! domain. First, when reaching
a terminal state, the Pareto front only consists of the received (ter-
minal) reward. Second, after applying equation 3, the range covered
by ND; got shifted by R. In both cases, points are sampled from the
uncovered parts of the R~ domain. For each point, the chosen
target value will be a value worse than the least possible reward
for objective d (e.g. the value of the reference point in dimension
d) if the point is non-dominated. On the contrary, if the sample is
dominated by a point, the target value will be that point’s value (see
figures 1b-1c). This ensures our Pareto front remains unchanged,
while still sampling from the whole domain.

3.3 Evaluation policy

During training, the actions the agent takes depend on the Pareto
front’s hypervolume. In contrast, once the Pareto front is known,
the user will select his preferred point, and expect the agent to reach
it. PQL does this by following that point during the episode. At each
timestep, we compute, for every possible action, the corresponding
Qser- One of the sets contains the target point (computed using R
and a point of ND;). The agent then takes the matching action, and
replaces the target value with the appropriate point from ND;. This
is performed until termination, at which point the target has been
reached (and is equal to the discounted sum of all the computed R
vectors).

4 EXPERIMENTS

We empirically evaluate our algorithm on two different environ-
ments. The first one, Deep Sea Treasure [15], is a well-known MORL
benchmark that serves as a proof-of-concept for our method, as no
deep-RL approach is needed. In the second environment, we create a
traffic-intersection simulator, using the Simulation of Urban MObil-
ity (SUMO) simulator [4]. This environment has a high-dimensional
state-space, and cannot be solved using the original PQL algorithm.

Algorithm 1: PDQN

initialize replay-memory D

initialize reward estimator R

initialize non-dominated estimator ND;

initialize target non-dominated estimator ND; = ND;

for episode = 1 to M do

while not terminal do

sample points p from R4-1

Qset(s, ., p) « R(s,.) ® YNDy(s,.,p)

hv « hypervolume(Qse (s, -, p))

a «— ¢ — greedy(hv)

execute a in environment, observe state s’, reward r,
terminal ¢

add transition (s,a,r,s’,t) to D

sample minibatch (s;, a;, ri, s}, t;) from D

sample points p; from R4~

_ ND(Ua’eAQset(sg» a’,pi)) ifnott;

- ri otherwise

update ND; by performing gradient descent step on
(yi — Qser(si, ai, pi))°

update R by performing gradient descent step on
(ri = R(si, ai))?*

every C steps copy ND; to ND;

Yi

end

end

4.1 Deep Sea Treasure

In Deep Sea Treasure, the agent is a submarine looking for hidden
treasures at the bottom of the ocean (see figure 2). On one hand,
the agent seeks the highest possible treasure (objective 0). On the
other hand, its fuel consumption is a concern: minimizing it is the
second objective. The agent can perform one of four actions at each
step (going up, down, left or right), each action giving —1 fuel. The
episode stops when a treasure is reached. The optimal Pareto front
is a known, concave function. The concave property means that
some points will not be reachable using any linear scalarization of
the reward function.

The state-space is of size 110, and is represented as a one-hot
encoding of the agent’s coordinates. Similarly, the performed action
is represented as a one-hot vector of size 4. Both the non-dominated
and the reward estimators have the same network architecture:

FCy(110 + 1,111/2) —> FC(55 + 4, 55) —> FC(55, 0)

/

FCa(4,4)

Where FCs is a fully connected layer that takes the state con-
catenated with a value for objective 0 as input, and FC, a fully
connected layer with as input an action. The output o is of size 2 for
the reward estimator, and 1 for the non-dominated point estimator.
Both are optimized using Adam [3], with a learning rate of 1073
and 10~ respectively. We keep y = 1 (no discount) and a batch size

® (55

Objective 1
e
T
Il
Objective 1

Objective 1

Objective 0

(a) A Pareto front (in black) that only ranges
over a subspace of the objective 0 domain. By
incorporating domain knowledge about the
objective-space (e.g., only positive rewards
for objective 1, in red), we can train the esti-
mator to output values outside this space (in
blue), and discard them during evaluation.

Objective 0

(b) Sampling strategy when the Pareto front
corresponds to the final terminal reward (in
black). The newly added points (in blue) dom-
inated by (5, 5) in objective 0 receive a value of
5 for objective 1, while the ones dominating it
receive a value of 0 (the reference point). The
hypervolume (in gray) remains unchanged.

| ° 0 | | | -
10 15 20 0 5 10 15 20

Objective 0

(c) Sampling strategy of the Pareto front (in
black) after shifting due to reward (4, 1) (in
red). This causes parts of the objective 0 do-
main to be uncovered. Samples are added (in
blue) in a similar fashion as figure 1b.

Figure 1: The Sampling strategies used to train the non-dominated set estimator.

Figure 2: The Deep Sea Treasure environment. The agent
starts on the top-left corner and tries to reach any of the
treasures. Farther treasures are worth more.

of 32. The output of ND; is normalized by dividing R with (124, 19)
in order to improve stability. The reference point used to compute
the hypervolume was chosen as (-1, —2), to ensure that it will be
below any normalized output of ND;. Finally, we train the agent
for 5 x 10* episodes.

4.1.1 Results. Figure 3 shows the estimated Pareto front (red)
compared to the true one (blue) in the start-state. It was computed
by keeping the non-dominated point of Qse(so, -, p), with p sam-
pled using the same strategy as during training. First of all, we can
observe that the network was able to approximate the general trend
of the compromises imposed by the environment. Moreover, only
5000 episodes are needed to reach an estimated hypervolume of

or —e— True Pareto front ||
—m— PDOQN Pareto front
_5 - |
o)
e -10 i
—15 1 |
! ! ! ! ! ! !

0 20 40 60 80 100 120

Treasure

Figure 3: The true Pareto front (in blue) in the start-state
compared with the estimated one (in red). The estimate is
computed as the non-dominated set of Qs (5o, .).

3.11 (not shown), at which point the it oscillates around this value
(the true hypervolume being 3.22).

While PQL is able to find the optimal Pareto front, it does so by
keeping track of the future returns, for every possible state-action
pair. In contrast, PDQN provides an informative approximation,
even though most of the points used for training where never
actually reached, since they were sampled over the whole treasure-
objective range [0, 124].

4.2 Traffic environment

In order to evaluate PDQN in a more complex state-space, we
created a traffic intersection using the SUMO library (see figure 4).

Figure 4: A visualization of the Traffic environment.

The car flow at the intersection is controlled by traffic lights, which
will be our agent. We devise 2 objectives. First, one should maximize
the traffic flow. Every car that leaves the intersection provides
a positive reward of 1. Secondly, we want to minimize the car’s
waiting time. At every time step, every car that has yet to pass the
intersection increments its waiting time. We provide the longest
waiting time as a negative reward to the agent. These objectives
might seem aligned but, as one road has two lanes while the other
only possesses one, the optimal policy to maximize traffic flow is to
simply always keep the lights green for the larger road. However,
if one focuses on the waiting time, one should regularly switch the
lights. The episode length is fixed at 200 steps.

The agent can execute two actions: turn the lights green (switch-
ing the other to red) for either of the two roads. When a light
switches, there is a delay of 3 time-steps during which the light
turns yellow, allowing the cars to safely brake. Each car has a posi-
tion (x, y), a driving speed and a current waiting time. We simplify
the state by tiling the 2-dimensional space and putting the waiting
time of each car in the appropriate slot, depending on its position.
The tiling is sufficiently fine-grained as to guarantee that no two
cars can fill the same slot. We use the four corner-slots to indicate
the appropriate traffic-light’s color (0, 1, 2 for red, yellow, green re-
spectively). The image is partitioned in 20 X 18 tiles and, to alleviate
the missing speed information, a history of 4 frames is kept.

Similarly as with the the previous experiments, the reward and
non-dominated estimators share the same architecture:

_40 -

—-100

Waiting time

—120

—e— Baseline Pareto front

—140 |- | —m— PDOQN Pareto front N

\ \ \ \ \
0 100 200 300 400

Traffic flow

Figure 5: The Pareto front found by PDQN (in red), compared
to baseline static policies, that switch the light at fixed inter-
vals (in blue).

Conv2D;(16, [2 % 2], [2 X 2])

|

Conv2D(32,[2 x 2],[1 X 1])

|

FCq(4,4
a(d.4) FC(2304 + 1, 2305/2)

T~

FC(1152 + 4,1152)

|

FC(1152, 0)

Where Conv2Dj is a convolutional layers with a concatenation of
the state and objective 0 as input, 16 filters of size 2X2 and stride 2Xx2.
Again, we optimize the networks with Adam, using learning rates
1074, 107 for respectively the reward, non-dominated estimator.
The output of ND; is normalized by dividing R with (400, 120), and
the reference point used is (-2, —2).

4.2.1 Results and Future work. Due to the complexity of the
environment, we were unable to calculate the optimal Pareto front.
A baseline was created by executing policies that switch the lights
at fixed, regular intervals. The length of these intervals ranges from
3 to 150 steps, with an increase of 5 steps per interval. Only the
policies producing non-dominated returns are kept. Figure 5 depicts
these baseline policies (in blue) compared with the estimated Pareto
front produced by PDON (in red).

First of all, we observe that, regardless of the chosen policy,
there will always be a minimum amount of cars passing through
the lights. The baseline performs better than expected in that regard,
as we observed episodes with a traffic flow inferior to 100 during

training. This occurs when The light is red most of the time for
the horizontal, larger road. The opposite also applies: the flow and
waiting time can be greatly improved by keeping the light green
most of the time for the horizontal road, and periodically switch
them to allow for the waiting cars on the vertical road to leave.

Although both these factors would account for more flat Pareto
front than the actual baseline, the estimate produced by PDQN
outputs the same waiting-time value, regardless of the chosen traffic
flow. The only exception is the leftmost sample (no traffic flow),
which we devise is due to the lack of any observed return in that
region, even using the worst possible policy.

Still, the network is able to converge towards a plausible waiting
time, even though it is the same regardless of the chosen traffic
flow. As such, we do believe that those preliminary results can
be improved upon, and that PDQN can be used in complex envi-
ronments. First of all, we will investigate the effect of different
sampling strategies: densely sampling the R4-1 space might lead to
a more fine-grained solution. Secondly, as for this environment, the
total return is composed of the sum of regular, small rewards (as
opposed to Deep-Sea-Treasure, that provides a one-time treasure
reward), we will incorporate more domain knowledge of the reward
function in our approximators. Finally, we will investigate if some
of the many improvements made on DQN, such as Double-DQN
[17], can be applied in our setting.

5 CONCLUSION

We extended DQN to cope with multi-objective sequential decision
problems, and were able to successfully apply it on a proof-of-
concept benchmark. Our algorithm, PDQN, was able to approximate
the Pareto front, using a novel network architecture and sampling
strategy. This is also, to the best of our knowledge, the first time
that an inner-loop method was devised for a Deep Reinforcement
Learning setting. However, when applied on a high-dimensional
traffic environment, PDQN fails to provide a believable estimate.
Still, due to the convergence of the network, and the plausible
waiting time, we do believe that the results can be further improved,
and that PDQN can potentially be applied on high-dimensional
state-space problems.

REFERENCES

[1] Andrea Castelletti, Giorgio Corani, A Rizzolli, R Soncinie-Sessa, and Enrico Weber.
2002. Reinforcement learning in the operational management of a water system.
In IFAC workshop on modeling and control in environmental issues. 325-330.

[2] Indraneel Das and John E Dennis. 1997. A closer look at drawbacks of minimizing
weighted sums of objectives for Pareto set generation in multicriteria optimization
problems. Structural optimization 14, 1 (1997), 63-69.

[3] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[4] Daniel Krajzewicz, Georg Hertkorn, Christian Réssel, and Peter Wagner. 2002.
SUMO (Simulation of Urban MObility)-an open-source traffic simulation. In
Proceedings of the 4th middle East Symposium on Simulation and Modelling
(MESM20002). 183-187.

[5] Daniel J Lizotte, Michael H Bowling, and Susan A Murphy. 2010. Efficient
reinforcement learning with multiple reward functions for randomized controlled
trial analysis. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10). Citeseer, 695-702.

[6] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[7] Sriraam Natarajan and Prasad Tadepalli. 2005. Dynamic preferences in multi-
criteria reinforcement learning. In Proceedings of the 22nd international conference

ey
&

(14]

[15

[16

(18

[19

[20

[21

[22

on Machine learning. ACM, 601-608.

Daniel Neil, Marwin Segler, Laura Guasch, Mohamed Ahmed, Dean Plumbley,
Matthew Sellwood, and Nathan Brown. 2018. Exploring deep recurrent models
with reinforcement learning for molecule design. In 6th International Conference
on Learning Representations (ICLR), Workshop Track.

OpenAl 2018. OpenAl Five. https://blog.openai.com/openai-five/. (2018).
Simone Parisi, Matteo Pirotta, and Marcello Restelli. 2016. Multi-objective rein-
forcement learning through continuous pareto manifold approximation. Journal
of Artificial Intelligence Research 57 (2016), 187-227.

Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming (1st ed.). John Wiley & Sons, Inc.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. 2013.
A survey of multi-objective sequential decision-making. Journal of Artificial
Intelligence Research 48 (2013), 67-113.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354.

Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. MIT press Cambridge.

Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan
Dekker. 2011. Empirical evaluation methods for multiobjective reinforcement
learning algorithms. Machine learning 84, 1-2 (2011), 51-80.

Peter Vamplew, Rustam Issabekov, Richard Dazeley, Cameron Foale, Adam Berry,
Tim Moore, and Douglas Creighton. 2017. Steering approaches to Pareto-optimal
multiobjective reinforcement learning. Neurocomputing 263 (2017), 26-38.
Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double q-learning. In Thirtieth AAAI Conference on Artificial Intel-
ligence.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. 2013. Scalarized
multi-objective reinforcement learning: Novel design techniques. In 2013 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL). IEEE, 191-199.

Kristof Van Moffaert and Ann Nowé. 2014. Multi-objective reinforcement learning
using sets of pareto dominating policies. The Journal of Machine Learning Research
15, 1 (2014), 3483-3512.

Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg, Wojciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev,
Richard Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John
Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky,
Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai Wu, Dani Yogatama, Ju-
lia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris
Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. 2019. AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time- strategy- game- starcraft-ii/. (2019).

Weijia Wang and Michéle Sebag. 2013. Hypervolume indicator and dominance
reward based multi-objective Monte-Carlo Tree Search. Machine learning 92, 2-3
(2013), 403-429.

Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279-292.

https://blog.openai.com/openai-five/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Abstract
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Multi-objective Reinforcement Learning

	3 Method
	3.1 Estimating the immediate reward
	3.2 Estimating the non-dominated set
	3.3 Evaluation policy

	4 Experiments
	4.1 Deep Sea Treasure
	4.2 Traffic environment

	5 Conclusion
	References

