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ABSTRACT

In this work-in-progress paper, we consider how a fleet of electric
vehicles can be charged with fine-grained control in order to bal-
ance the load on the electricity grid. We do this by using a policy
gradient algorithm that uses the joint information of all the cars
and outputs a continuous action for every agent. We observed that
the reinforcement learning algorithm is able to learn a policy that
reduces electricity consumption peaks and performs better than
the business-as-usual case and when just using a backup controller.
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1 INTRODUCTION

Electric vehicles (EVs) are becoming a popular alternative for tradi-
tional internal combustion engine vehicles. They are cost-competitive
compared to a gasoline car [20] and the increase in charging sta-
tions can alleviate the range anxiety problem [3]. as more charging
stations are installed, as well as being cost-competitive compared
to a gasoline car [20]. Often, people are able to charge their car at
work, where it is thus standing for a full work day [11]. In the naive
case, these cars would just be charged when they arrive, which
can lead to peaks in electricity consumption. These peaks can lead
to voltage deviations and power losses [2]. However, as cars are
connected longer than they are being charged, it is possible to shift
the electricity consumption to other times of the day. In this work-
in-progress paper, we apply reinforcement learning in order learn
how much electricity to consume for every electric vehicle at each
time step (i.e., a demand-response problem) as to minimize peaks in
electricity consumption caused by the charging of multiple electric
vehicles. We allow for fine-grained control, by processing the state
information of every connected car and outputting the charging
speed for each electric vehicle in the form of continuous actions.
We do this by employing Proximal Policy Optimization [14]. We
hypothesize that this can make it easier for a control algorithm to
distribute the load of charging multiple electric vehicles.

2 RELATED WORK

Mets et al. [7] also aim at reducing peaks and flattening the load
when charging multiple electric vehicles. To do this, they use qua-
dratic programming, in which case the power can also be set as a
continuous value. However, this technique assumes full knowledge
of the model in order to compute the optimal charging schedule.
This may not always be available in the real world or may be too
complex to be used in model-known optimization. In contrast, a
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reinforcement learning algorithm only needs a reward as guidance
towards the desired behavior.

Like our work, the algorithm described in [1] also has the ob-
jective of shaving peaks in electricity consumption. They use an
aggregate-and-dispatch approach to deal with a large number of
EVs. First, their states are aggregated in order to represent the power
flexibility. They then use their control policy, which is learned us-
ing fitted Q-iteration, to output a single action. This action is then
dispatched to a specific action for each EV using a bidding function
based on the priority of each EV.

Vandael et al. [19] also apply the aggregate-and-dispatch ap-
proach. However, their algorithm contains 2 decision phases. In the
first one, a schedule is learned for buying enough electricity in the
day-ahead market. The second phase consists in deciding during
a single day how much to charge the vehicles in order to satisfy
the needs of the consumers and to fully use the bought electricity.
The action of the latter is again dispatched to each vehicle based
on priority.

Valogianni et al. [18] employ Q-learning for each individual EV,
where there goal for each EV is to schedule the charging as to
minimize the cost, while still providing enough electricity when
needed. This reduces the peaks at typical hours of the day (e.g.,
after work) but introduces new, although less pronounced, peaks
during the night. In [17] the authors aim at solving this problem by
having a smart grid manager that learns to set, at each time step,
the right price for every charging rate (i.e., speed of charging). This
smart grid manager has the objective of having a specific aggregate
demand vector (e.g., constant electricity consumption for a whole
day), while the consumers still want to minimize the cost given
their preferences. They do not apply reinforcement learning but
instead use heuristics to find the right policy for both the smart
grid manager and the consumers.

In [10], reinforcement learning is used in order to balance the
electricity load when charging multiple electric vehicles. In order
to deal with a large number of EV vehicles that have to be charged,
they are binned based on their state. These bins are also used as
input for their neural network, which also has an output (i.e., action)
for every bin. The output for each bin is either to charge the cars in
that bin with full power, half power or not at all. Fitted Q-iteration
is used as the reinforcement learning algorithm. The input for this
algorithm is a set of trajectories, which are randomly sampled. As
they group cars both for input to the algorithms as when outputting
actions, no fine-grained control (e.g., per car) is possible.

3 BACKGROUND

Reinforcement learning considers a setting that consists of an infi-
nite horizon discounted Markov Decision Process (MDP) defined



by the tuple (S, A, P, R, y). S is the finite set of all the possible
states of the environment and A is the finite set of all the possible
actions that can be taken in the environment. # is the transition
function that defines a probability for ending up in a certain state
given the current state and an action: ¥ : S X A X S — [0, 1]. The
reward function R returns a scalar value given the current state,
the action that was taken and the next state of the environment
after executing the action: R : SX A xS — R.y € [0,1] is the
discount factor for future rewards. For n timesteps t1,. .., t,, an
agent observes the state of an environment s;, takes an action a;
which is executed in that environment, and receives a scalar re-
ward R; for taking that action in that state of the environment. The
environment also transitions to a new observable state s;+1. The
n-step return is then defined as Gyt 4+n = 2?21 yiRHi.

To select an action given a state, we define the policy function
7, which outputs a probability for taking an action in a certain
state: 7 : S X A — [0, 1]. The value function for a state is defined
as the expected return for starting from state s and taking actions
according to & afterwards: V7 (s) = E;{R¢|s; = s}. The action
value function for a state and action is the expected return for
starting from state s, taking action a and following 7 afterwards:
Q" (s,a) = Ex{R¢|st = s,a; = a}.

3.1 Policy gradient methods

In policy gradient methods [16], the policy function is parametrized
by 0: my(s, a) = P(als, 0). 6 can be, for example, the weights of an
artificial neural network. Here, the goal is to find values for 0 as to
maximize the expected return from each state s. This can be done
by using the gradient E, [Vg log 7 (s, a)(Q™¢ (s, a) — V7 (s))] [15].
The second part of this formula is called the advantage function,
ie. A0 = Q70(s,a) — VO(s). In practice, the value function and
action-value function are approximated.

The Proximal Policy Optimization (PPO) algorithm [14] is a
policy gradient algorithm that intends to improve data efficiency,
scalability and robustness to hyperparameter values. It aims to
achieve this by clipping the probability ratio of the old policy and
the new policy. Intuitively, this means that the new policy cannot
differ too much from the old one. By clipping, beyond a certain
point the difference in policies is ignored and there is no incentive

anymore to move the policy even further from the old one. The
mo(arlse)
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probability ratio is defined as r;(0) = The objective

itself is the following:
LR (0) = B, [min(re(0)A,, clip(re (6),1 - €, 1+ ©)A))], (1)

where the clip function clip(u, @, f) = max(min(u, ), @) bounds
the probability ratio r;(6) and where epsilon is a hyperparameter,
typically € = 0.2. We take the minimum of the unclipped and
clipped objective in order to have a pessimistic bound as the final
objective. The algorithm starts by using possibly multiple actors
that each use policy 7y, to collect a trajectory of T time steps.
Afterwards, the data of all the actors is combined and used to learn
0 for K epochs with minibatches of size M < NT. After updating 0,
0014 is set to 0 and a new iteration can start.

4 ENVIRONMENT

In this setting, the goal is to charge cars at a charging station such
that the load on the electricity grid is balanced and there are no
peaks in electricity consumption. The environment consists of N
charging stations at which cars can be charged. Cars that arrive at
a charging station are characterized by the number of time steps

t
Pt and the

amount of energy that is required, Ae?eq. The latter is expressed in

that the car is still present at the charging station, At;jl

terms of battery percentage that is required, with 0 < Ae?eq, < 100.
It is assumed that all cars have the same battery capacity and can

be charged at the same charging rates. The car only leaves after

it has no time steps left (i.e., At?epart = 0), even if it was already

charged by that time. At each time step, each car can be charged
with an amount of power in the range [0, 25], again expressed in
terms of battery percentage. In case of cars with different charging
speeds, the environment could be adapted as to directly use the
power as action, bounded for each car by the maximum charging
speed for that car.

Each charging station is equipped with a backup controller that
can override the action of the reinforcement learner to ensure that a
car was not charged more than needed and that it will always leave
with all the required energy satisfied. Using a backup controller
instead of incorporating this requirement into the reward gives us 2
advantages. First, we now have the guarantee of energy satisfaction.
Second, we avoid having another parameter in case we would use
a weighted sum as reward. In practice, the action a; for each car i
is clipped:

ci = clip(a’inin, ai®), (2)
a‘imn = max(0, Ae:eq - (At?epart - 1) * a]™), (3)
a'®* = min(Ae?eq, 25), (4)

where clip is the same function as in Section 3.1.

The state at each step of the environment is defined as

s=(t, Atfepart, Aeieq, Atgepm, Ae;eq, .. ‘,Atﬁ]epart, Aeﬁq), (5)
Where t is the current timestep. Intuitively, besides the timestep,
the state consists of the amount of time steps that the car at each
charging station is still there and the amount of energy that it has
to be charged with by the time it leaves. When there is no car at a

charging station i, At?eP '~ 0 and Ae;eq = 0. As the order of the
charging stations does not influence any part of the environment,
it is chosen randomly at the start of the experiment. The action at
each time step is the amount to charge the car at every charging

station with:

a=(ay,az,...,an). (6)
The reward given at every time step is the negative of the amount
by which all the cars at the charging stations are charged:

(3] .

Note that the reward includes the actual consumption ¢; and not
the actions a; of the reinforcement learner. For example, it will get
a negative reward if the reinforcement learner does not “want” to
charge the car(s) but the backup controller overrides it in order to



satisfy the required energy. Thus, because of this way the backup
controller works and because every car that arrives needs to be
charged (i.e., cars never have a full battery upon arrival), the total
reward of an episode will always be negative.

One episode consists of 168 time steps, i.e., a time step for each
hour of a week. Before the episode starts, we sample using a normal
distribution for each charging station and for each day at what time
the car will arrive. At each time step ¢, first the amount of required
energy and time steps until departure are updated for each car:

depart

,' depart 1,

req lreq (8)
Aei <—Aei —cj.

At — At

Afterwards, cars for which At?emrt = 0 are removed and new cars

are added. Then, we add cars according to the arrival times we

sampled before. The amount of time steps that the car will stay,

depart . . req
Ati , and the energy that is required, Aei , are also sampled

using a normal distribution. The means and standard deviations

for the normal distributions used for sampling when cars arrive

and for sampling Ae;eq and At?eP ! are specified in Appendix A.

These values are loosely based on data regarding the Charge near
work cluster described in [12], which is hypothesized to represent
employees arriving at work in the morning and leaving after a work
day.

5 ALGORITHM DETAILS

As reinforcement learning algorithm, the Proximal Policy Optimiza-
tion algorithm, described in Section 3.1, was used. It contains a
separate fully connected network for the actor and for the critic.
Both networks contain 2 hidden layers with each 256 hidden units,
with a tanh non-linearity applied after each layer. The network of
the critic then has a single output, which is the predicted value. The
network of the actor outputs for each car the mean of a gaussian
distribution. There is also a parameter for the standard deviation
of the gaussian distribution of each charging station. As it is not
part of the actor network itself, it does not depend on the state. In
order to get an action (i.e., the amount of power for the car at each
charging station) to be executed in the environment, the gaussian
distribution of each charging station is first sampled, then clipped
between 0 and 1, and then scaled to the actual range of possible
power output [0, 25]. This clipping and scaling is done because, due
to the initialization, the neural network of the actor at first outputs
values around 0. If we would just use the samples directly as actions,
we would only slowly move towards the maximum action if this
would be optimal. This is due to the learning rate @ < 1. Before
adapting parameters, the chance that a high action is tried would
also be low.

The other way around, the state and reward are normalized
before using them in the action selection or learning process of the
algorithm. This is done for stability purposes.

The critic Vy(s;) is learned using the squared error loss L}/ =

2
(Vg (s¢) — V:arg) , where V,targ = Gy. The critic is used for comput-

ing the advantage A;, which is computed by applying Generalized
Advantage Estimation [13]. The values for the hyperparameters

used to execute the experiments, chosen empirically, are listed in
Appendix B.

6 RESULTS

Here, we show the results of our algorithm applied for a total
of 10000 episodes to a setting of our environment with N = 10
charging stations. We compare our algorithm to 2 other policies.
The business-as-usual (BAU) policy just charges the cars with full
power as soon as they arrive. The backup policy does the opposite
and charges the car at the last moment possible. The backup policy is
the situation where we just give action 0 for every charging station
to the environment, thus letting the backup controller described in
Section 4 charge each car.

The graph of the total reward per episode can be seen in Figure 1.
As can be seen, the algorithm converges after around 3000 episodes.
The variation in reward is due to the sampling from gaussian dis-
tributions when deciding the arrival time and time until leaving.
The reinforcement learning already starts with a higher reward
than the BAU policy. This can be explained by fact that the rein-
forcement learner first does random actions and that it uses the
backup controller to make sure that the required energy is satisfied.
We can also see that, after 3000 episodes, the reward of the RL
agent is still not always better than if we would just use the backup
controller. This is caused by reward function. The backup policy
only consumes at the last time steps possible for each car, while
the reinforcement learner spread its consumption better but thus
also accumulates penalties in more time steps. The backup policy
performs better than the BAU policy because there is more variance
in the time until leaving than in the arrival time.

Total reward for different policies
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Figure 1: Total reward per episode for different policies. The
values were smoothed using exponential smoothing with
weight 0.4.

Figure 2 shows the amount of peak violations per episode. This
means that, per episode, we count the amount of time steps in which
the sum of the consumption of the charging stations exceeds a
certain threshold. Here, this threshold 7 is defined as being the total
consumption if half of the agents would be given their maximal
power. So, when there are 10 charging stations in use and the



Peak violations for different policies
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Figure 2: Amount of peak violations per episode for differ-
ent policies. The values were smoothed using exponential
smoothing with weight 0.4.

maximum consumption percentage is 25, 7 = 125. We can see that
the BAU policy and the RL agent start with the same amount of
peak violations. However, after some time, the RL agents seems
better at avoiding peaks and performs better than the backup policy.
Some peak violations may still occur due to randomness in arrival
times and time until leaving and due to the RL agent sampling
actions from normal distributions. We tried using the negative of
the amount of peak violations directly as the reward, but this did
not give as favorable results.

In Figure 3, the consumption during the last episode (10000) can
be seen. Interestingly, different learned behaviors where observed
for different charging stations. For some charging stations, the cars
there were always immediately charged upon arrival. The cars of
another part of the charging stations were just charged randomly
every time step until they were fully charged. For the last group
of charging stations, the reinforcement learner did not command
them to be charged at all. Thus, the backup controller had to make
sure that they where charged and they were charged at the last
moment possible.

7 CONCLUSION

In this work-in-progress paper, we saw how we can control the
charging of electric vehicles in a fine-grained manner in order to
balance the load on the electricity grid. We do this by employing a
policy gradient algorithm that gets information about all the cars as
input and uses an artificial neural network to output an action for
every car. The algorithm outperforms the business-as-usual case
and is on par in terms of reward with a backup policy which charges
the car at the last moment possible. However, our algorithm leads
to less peaks in electricity consumption than this backup policy.

8 FUTURE WORK

In future work, we would like to gather data in order to build a more
accurate simulator of the setting we want to learn in. We will also
experiment with variants of the environment with more agents

to see what the effect is for the reinforcement learner. Without
modifications, the state and action space and thus the size of the
neural network would grow exponentially with the number of
agents. Thus, we will look at modifications to the current algorithm
and other algorithms that are better suited to cope with a large
number of agents that need to cooperate with each other, such as
the algorithms presented in [5], [8] and [4]. Last, we will introduce
multiple objectives such as electricity cost and influence on the
battery capacity of the cars. Such problem settings raise the need
for multi-objective reinforcement learning algorithms in order to
find the right balance between these objectives [9].
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Figure 3: Electricity consumption per charging station. In the upper graph, a stacked bar chart is shown with the car consump-
tion per timestep. In the lower graph, each horizontal bar represents the time span in which the car was connected to the
charging station.
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A ENVIRONMENT PARAMETERS

o Number of charging stations: 10
o Gaussian distribution for arrival time:
- Mean: 8.0
- Standard deviation: 1.0
o Gaussian distribution for time until leaving:
- Mean: 9.0
- Standard deviation: 1.0
e Range of required charge percentage at arrival: [20, 100]
e Range of action per car: [0, 25]

B PPO HYPERPARAMETERS

e Number of local steps: 2048

o Batch size: 32

e Clipped Surrogate Objective epsilon €: 0.2
o Number of epochs: 10

e y:0.99

o Generalized advantage estimation A: 0.95
o Neural network of actor and critic:

— Number of hidden layers: 2

— Non-linearity: tanh

— Number of units per layer: 256

- learning rate a: 0.001

— Optimizer: Adam [6]

- Gradient norm clipping threshold: 50.0
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