
Evaluating Adaptive and Non-adaptive Strategies for Selecting
and Orienting Influencer Agents for Effective Flock Control

Adam Dees
University of Tulsa
apd615@utulsa.edu

James Hale
University of Tulsa
jah6484@utulsa.edu

Sandip Sen
University of Tulsa
sandip@utulsa.edu

ABSTRACT
Flocks navigate for large distances, moving in a coherent path
through space, under mutual influence of flock members. Such in-
fluences may include repulsion, orientation, and attraction. Certain
applications give rise to the need to control the movements of flocks,
e.g., circumventing critical zones. Researchers have investigated the
problem of seeding flocks with a percentage of externally controlled
agents to achieve effective flock control. Recent studies of flock
control include orthogonal directions of (a) selecting influencing
or leader agents and (b) orienting the leader agents. We build on
these studies and evaluate combinations of selecting and orienting
choices for fast convergence of the flock to follow desired travel
directions with both adaptive and non-adaptive selection and orien-
tation algorithms. We evaluate the effectiveness of combined flock
control strategies under different physical world models.

1 INTRODUCTION
Multiagent system researchers are interested in designing and ana-
lyzing ad hoc and emergent coordination among agents. Of partic-
ular interest to us is the topic of synthesizing coordinated behavior
in groups without any explicit communication or prior agreements
such as abiding by coordination protocols. Coordination in such
scenarios emerges from interaction or behavioral rules followed by
agents in a group. Individual agents in such groups, often referred
to as flocks, swarms, or herds, use innate behaviors to respond to
sensory stimuli from neighboring agents. Sensory stimuli can in-
clude positions, orientations, velocities, etc. of neighboring agents.
Behavioral influences from other agents include repulsion, attrac-
tion, orientation, etc. that shape the movement of each agent in
addition to any other existing environmental influences.

In this paper, we use the term flocks and flocking to refer to a
range of coordination scenarios and behaviors that include situa-
tions which have been traditionally referred to as flocking, swarm
control, herding behaviors, etc. in the literature [25]. Researchers
in diverse disciplines, e.g., physicists [31], biologists, and computer
graphicists [25], among others, have investigated such behaviors.
More often than not, researchers in natural sciences are interested
in observing, analyzing and explaining emergent properties of flock-
ing behaviors in the animal kingdom. A wide range of life forms
exhibit flocking behaviors, ranging from insects such as swarms
of bees, shoals of fish [12, 22], flocks of birds [20, 24, 27, 34], herds
of existing (elephants, giraffes, deers, primates [28], etc.) and even
extinct (mammoths [14]) animal species, etc. Incentives for flocking
are equally diverse and includes improved foraging [24, 27], defense
against predators [2, 13], navigational efficiency [12, 22], protection
against environmental hazards [4], survival of abandoned chicks in
‘creches’ [20, 34], etc.

Agent-based simulation is a valuable tool for natural scientists
to complement empirical research that relies on data gathered from
observations. For example, one can envision the use of representa-
tive simulations of animal flocks to study the effects of intervention
mechanisms, e.g., for herding an endangered population from re-
gions of depleted resources or targets of illegal poaching to safer,
more abundant and sustainable location. High-fidelity simulations
of flocks, effectively informed by meticulous empirical research,
can be a valuable tool for flock management by conservationists,
environmental workers, wildlife biologists, herders, etc. In a reverse
fashion, computer scientists have developed effective optimization
algorithms inspired by empirically observed flocking and swarming
behaviors [5, 17, 18, 26].

We, like other multiagent system researchers [6–11, 15, 29, 30,
32], however, are interested in studying flocks of artificial agents,
either robotic or virtual. The generic task that we investigate is
the control of a large group of artificial agents whose behavioral
characteristics are well-documented, i.e., we know how these agents
respond to sensory stimuli. The research goal is to strategically
place a few carefully designed influencer or leader agents in the
flock to control flock movement to follow the desired trajectory.
Motivating applications for the use of influencer agents for flock
control include guiding a flock of birds around critical areas, such
as airports and wind farms, where they would otherwise have
the potential to do substantial damage to humans and themselves,
without veering far from the course. If relatively few leaders can
be shown to effectively and robustly maneuver large flocks, agent
designers can rapidly deploy targeted solutions in a short time, by
programming only a few leader agents, for new goal trajectories
or orientation. The large majority of the agents in the flock, the
non-leader or follower agents, need not be reprogrammed for a new
"mission". The ability to effectively control a large group of follower
agents, with relatively few leader agents possessingmission-specific
control behaviors, would provide significant cost savings and timely
responses to new mission goals in comparison to reprogramming
and deploying every agent in the flock.

Prior work on agent-based flock control have investigated vari-
ous key aspects including the following:

Leader Selection: Various strategies have been investigated
to either select leaders from the available agents [7, 30] or
place new leaders in locations that will maximize their ability
to control the flock [6, 9].

Leader Orientation: Various behaviors have been investigated
to determine the direction and timing of orientation and ve-
locities to be chosen by the leaders to most effectively control
the flock [6, 9].

Leader Roles: Some research has investigated a democratic
process of electing leaders periodically and hence leadership



can change over time [32] and leaders can be mediators,
controlled by human users, who perform diverse roles in the
flock [16].

Other Leader Behaviors: In certain situations, such as under
sparse and distributed agent scenarios, leaders may first
strategically position themselves in the group, which might
include waiting in a holding pattern, before triggering their
influencing orientation behaviors [6].

Human Control: Human controllers can exert either indirect
control through changing environmental features [19, 33] or
direct control by changing agent parameters [3, 25], provid-
ing intermittent or continuous inputs [1, 23].

Influence Models: An influencemodel determines how agents
are influenced by other agents in their neighborhood. Influ-
ence models vary in terms of the effect of distance of the
neighbor and a subset of attractive, repulsive and orienta-
tion effects exerted on an agent by its neighbors [16, 30]
(see Figure 1). We note that the influencer agents only exert
influence on other agents but are not influenced by others.
However, follower agents cannot distinguish between influ-
encer agents and other follower agents and react equally
to influences from both of these agent types. It is typically
assumed though, that the influencer agents are aware of the
location and identity of other influencer agents. This makes
the flock control problem more challenging compared to the
scenario where the influencers have distinctive positions of
hierarchy in the group and hence have a greater ability to
influence the followers.

Most of the existing literature on flock control, with few excep-
tions [9], primarily focus on investigating options for only one
aspect of flock control while fixing the other attributes of the agent
or the domain. We investigate combinations of the most promising
influence selection and orientation strategies and identify some
novel approaches that perform well in various environments. We
also experiment with multiple influence models, environments or
physical realities governing how agents influence one another. The
goal is to come awaywith recommendations for influencer selection
and orientation behaviors for some of the commonly investigated
influence models.

In particular, we are interested in studying the relative advan-
tages of adaptive versus non-adaptive algorithms. In the current
context, non-adaptive strategy choices by influencer agents ignore
the positions and the likely decisions of other influencer agents,
while adaptive strategy choices do take those factors into considera-
tion. While the former can be computationally cheaper and requires
less sensory and processing capabilities, the latter might be more
robust and effective. Our results indicate that different influencer
selection and orientation behaviors are best suited for different
environments (influence models).

The rest of the paper is organized as follows: Section 2 describes
the influence models, adaptive and non-adaptive influencer selec-
tion and orientation selection strategies; Section 3 presents the ex-
perimental framework and results from the experiments; Section 5
summarizes our findings and identifies future research directions.

Figure 1: The zonal influence model showing zones of re-
pulsion (zor), orientation (zoo), and attraction (zoa). Slightly
modified figure from Tiwari et al. [30].

2 MODEL
A flock is composed of a set of influencer agents I and follower
agents F . Each agent a has a two-dimensional position vector pa
and a two-dimensional velocity vector v̂a , the latter vector always
has a magnitude equal to 1 to maintain constant and equal speed for
all agents. Every agent has three concentric circular zones, defined
in order of increasing size, one of which is a circle called the "zone
of repulsion",ZR,a , and the other two are annuli with inner radii
set such that they do not overlap with the zones smaller than them
called the "zone of orientation",ZO,a , and the "zone of attraction",
ZA,a (see Figure 1). These agents exist in a looping 2-dimensional
space [0, 1]x[0, 1] in that ∀i,pa,i ∈ [0, 1]. Looping is achieved by
checking each component of the position vector and adding 1 so
long as the component is less than 0 and subtracting 1 so long as
the component is greater than 1. Our distance finding algorithm
d(a,b) takes this looping into account by taking the Euclidean
norm | |pa −p(a,b)| |, where p(a,b) is the looping position function,
defined as:

p(a,b) = argmin
pb+(n,m)

| |pa −pb + (n,m)| |,n ∈ {−1, 0, 1},m ∈ {−1, 0, 1}

We initialize flocks by setting agent positions p uniformly within
a circle of radius 0.2 centered around the position (0.5, 0.5). We
consider two initial flocking configurations: aligned and unaligned
corresponding to a coordinated or uncoordinated flock respectively.
Velocity vectors v̂a are assigned in the unaligned case by randomly
and uniformly selecting a point on the unit circle. In the aligned
case, a similar random point on the unit circle is selected and as the
midpoint of an arc of length .7 that is uniformly sampled to select
initial velocities for all agents. Influencer agents I are then selected
according to one of several algorithms described below, leaving the
remainder as follower agents F . A target velocity θf ∼ U(0, 2π )
for the flock is randomly selected.

The simulation progresses in discrete time-steps which are di-
vided into a phase of velocity update and a phase of position update.
During the velocity update phase, each agent chooses its desired
next orientation. All agents ultimately update their velocities pri-
marily due to the conditions of their zones of repulsion. Velocity
update rules for follower agents vary depending on the influence
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model. Influencer agents have velocity update rules which vary
depending on the particular influencer orientation strategy used.
However, only in one of the four cases of the influencer agent veloc-
ity update function (given below) is the specific orientation strategy
algorithm used.

v̂a (t+∆t) =



−

∑
b∈ZR,a p(a,b)−pa

| |
∑
b∈ZR,a p(a,b)−pa | |

ZR,a , ∅

OrientationStrateдy ZR,a = ∅ ∧ ZO,a , ∅∑
b∈ZA,a p(a,b)−pa

| |
∑
b∈ZA,a p(a,b)−pa | |

ZR,a = ZO,a = ∅ ∧ ZA,a , ∅

v̂a (t) Otherwise

All velocities changes (both influencer and follower) are bounded
by a maximum turn of ω = 0.2° per time-step toward their desired
velocity. Once velocities are processed, we update the positions of
agents accordingly:

pa (t + ∆t) = pa (t) + ∆t ∗ v̂a (t + ∆t)

These new positions are checked to see if they are out of bounds,
and if so they are looped to the opposite side of the plane following
the procedure described earlier.

At this point the time-step is complete and we test for conver-
gence of the flock. We define convergence similar to that used by
Tiwari et al. [30]. The sum of follower agent Cartesian velocities is
converted into a polar coordinate form, then taking the radian com-
ponent to be θ : representing the average direction of the follower
agents. If θ ∈ θf ± 0.1radians for three time-steps in a row, we
consider the flock to have converged. If the flock has not converged
yet, another time-step is executed.

2.1 Influence Models
Now we define three different environments corresponding to dif-
ferent ways in which agents exert influences one another.

Distinct zonal: Follower agents in this model are either re-
pelling from, orienting with, or attracting to other agents.
These are discrete cases where repelling has ultimate pri-
ority, then orientation, and lastly attraction. The follower
velocity update function is defined as such:

v̂a (t+∆t) =



−

∑
b∈ZR,a p(a,b)−pa

| |
∑
b∈ZR,a p(a,b)−pa | |

ZR,a , ∅∑
b∈ZO,a v̂b

| |
∑
b∈ZO,a v̂b | |

ZR,a = ∅ ∧ ZO,a , ∅∑
b∈ZA,a p(a,b)−pa

| |
∑
b∈ZA,a p(a,b)−pa | |

ZR,a = ZO,a = ∅ ∧ ZA,a , ∅

v̂a (t) Otherwise

Inverse zonal: All zones are active but the influence of other
agents is inversely proportional with distance from the agent
by an inverse cubed law. With the addition of the inverse
distance weighting, this model is equivalent to distinct zonal
with all three zone equations summed and normalized. This
is a novel model.

Couzin et al. zonal: The orientation and attraction zoneswork
in tandem when the follower agent is not forced to repulse
itself from other agents. It is designed such that each agent
is equally weighted, as opposed to equally weighting each

zone. The follower velocity update function is defined as
such:

v̂a (t+∆t ) =


−

∑
b∈ZR,a

p(a,b)−pa
| |
∑
b∈ZR,a

p(a,b)−pa | |
ZR,a , ∅

v̂a (t ) ZR,a = ZO,a = ZA,a = ∅∑
b∈ZO,a

v̂b+
∑
b∈ZA,a

p(a,b)−pa
| |p(a,b)−pa | |

| |
∑
b∈ZO,a

v̂b+
∑
b∈ZA,a

p(a,b)−pa
| |p(a,b)−pa | |

| |
Otherwise

2.2 Influencer Selection Strategies
Center: Center placement attempts to make the most con-

nected and central agents influencer agents by first discard-
ing the convex hull of the agents from consideration. Af-
terward it selects the most central |I | agents according to
|ZO,a ∪ZR,a | to be influencer agents. This selection algo-
rithm is considered non-adaptive as it assigns leadership to
agents near the center, without considering the proximity of
other leaders.

Periphery: The objective of this placement is to border the
flock of agentswith the influencer agents. Themethod achieves
this by repeated taking the convex hull of the agent positions
and setting those positions to be influencer agents so long
as we still have influencer agents to place. If the convex hull
size happens to be greater than the number of influencer
agents still to place, we randomly select an equal number
of positions from this hull to be influencer agents. This al-
gorithm is considered non-adaptive as it randomly assigns
leadership to agents on the convex-hull.

k-Means: The k-Means clustering algorithm [21] is used to
select k leaders located near the center of different clusters
of agents on the plane. This selection algorithm is adaptive
as leader selections affect each other.

Attraction-Repulsion (AB): Themotivation for this approach
is to select leaders that are close to clusters of agents while
still being somewhat evenly dispersed in the population
so that almost all follower agents are being influenced. To
achieve this, k target positions for influencers are identi-
fied that balance attractive forces from all follower agents,
weighted by an attraction parameter, A, and repulsive forces
from all other target positions, weighted by a repulsion pa-
rameter, R. Subsequently the nearest agent to each of the
identified points is chosen as the influencer agents. This
algorithm is adaptive as it considers the locations of other
selected leaders when assigning leadership roles. The algo-
rithm, developed for this paper, is presented in detail within
Algorithm 1.

2.3 Influencer Orientation Strategies
Face Target Direction (FT): The simplest of all the orienta-

tion algorithms; all influencers orient towards the target di-
rection. This is the only non-adaptive orientation algorithm
in our experiments, as the agent’s actions are not influenced
at all by the behavior of other members of the flock.

One-Step Lookahead (OSL): Each influencer agent performs
a one-step lookahead to check, for each of its possible orien-
tations, the resultant orientation of the followers around it
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Input :
α ← .3: Attraction value
β ← .7: Repulsion value
I: Set of influencer agents (initially randomly assigned)
F: Set of following agents

1 I′ ← I

2 for c ∈ I′ do
3 vectorSumInf luencers ← (0, 0)
4 vectorSumFollowers ← (0, 0)
5 for a ∈ F ∪ I do
6 if a ∈ F then
7 vectorSumInf luencers ←

vectorSumInf luencers − pa + pc
8 else
9 vectorSumFollowers ←

vectorSumFollowers + pa − pc

10 point ← pc + (vectorSumInf luencers ∗ β/ |I |) +
(vectorSumFollowers ∗ α/ |F |)

11 newLeader ← argmina∈F d (a, point )
12 I ← I − {c } ∪ {newLeader }
13 F ← F ∪ {c } − {newLeader }

Algorithm 1: The Attraction-Repulsion (AR) influencer selec-
tion algorithm.

after one step. The influencer then chooses the orientation
that results in the closest alignment of the followers one step
into the future. See Algorithm 2 for details. This algorithm
is adaptive as an agent’s decisions are determined by the
movements of surrounding agents.

Augmented OSL (AOSL): A slightly revised form of one-step
lookahead which will not consider influencer agents in its
own orientation zone; precisely, this considers agents b ∈
ZO,a ∩ F instead. This is because OSL calculates the orien-
tations of those in theZO,b as if v̂b will tend toward choice
should a adopt it, which does not necessarily follow for an-
other influencer agent b. Like OSL, this algorithm is adaptive,
for the same reasoning as OSL.

Two-step Lookahead (TSL): A sophisticated version of one-
step lookahead which considers two round in the predicted
future to make one of the n2 choice combinations that min-
imize the θf error of those around it in the next two steps.
Again, this algorithm is adaptive.

Coordinated: A OSL rooted implementation that creates pair-
ings between two influencer agents. No influencer agent is
allowed to belong to more than one pairing, although an in-
fluencer agent could be without one. Pairings were globally
maximized based on the amount of intersection between two
influencers’ zones of orientation. The two members of the
pair would consider every combination of choices it and its
partner could make, and minimize the θf error of agents in
both its and its partner’s zone of orientation. This algorithm
depends on other agents’ actions, so it is labeled adaptive.

Input :
ZO,a : Zone of orientation of a
θf : Target theta
n: Number of angles to consider
F: Set of follower agents

1 velocityChoices ← {2π i
n |i ∈ {0, 1, · · · , n }}

2 bestError ←∞
3 bestChoice ← ∅
4 for choice ∈ velocityChoices do
5 or ients ← ∅
6 for b ∈ ZO,a do
7 or ient ← (0, 0)
8 for c ∈ ZO,b do
9 if c ∈ F then

10 or ient ← or ient + v̂c
11 else
12 or ient ← or ient + choice

13 or ients ← or ients ∪ {or ient }

14 errorSum ← 0
15 for or ient ∈ or ients do
16 errorSum ←

errorSum + radianError (toRadians(or ient ), θf )

17 meanError ← errorSum/ |or ients |
18 if meanError < bestError then
19 bestError ←meanError
20 bestChoice ← choice

21 return bestChoice

Algorithm 2: The One-Step Lookahead influencer orientation
algorithm.

Adaptive Orientation Non-Adaptive Orientation
One-Step Lookahead Face Target Direction
Augmented OSL

Two-step Lookahead
Coordinated

Table 1: Classification of Orientation Algorithms

Adaptive Selection Non-Adaptive Selection
k-Means Center

Attraction-Repulsion Periphery
Table 2: Classification of Selection Algorithms

2.4 Adaptive vs. Non-Adaptive Approaches
We were interested in the effectiveness of adaptive selection and
orientation algorithms when compared to non-adaptive models
for flock control. In our experiments, an adaptive behavior is one
which alters its behavior based on the state of other agents; while a
non-adaptive behavioral model dictates an agent ignore the actions
of other agents in its vicinity. We have grouped the orientation
and selection algorithms in this paper into groups of adaptive and
non-adaptive in Tables 1 and 2 respectively and investigate the
relative performance between them in our discussion.
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Symbol Parameter Default Value
F Follower agents |F | = 180
I Influencer agents |I | = 20
A Agents (the flock) F ∪ I

a Agent a
pa a’s position vector ∀i, pa,i ∈ [0, 1]
v̂a a’s velocity vector | |v̂a | | = 1

p(a, b)Looping position of b for a
d (a, b) Distance between a and b
ZR,a a’s Zone of Repulsion {b ∈ A |d (a, b) ∈ [0, 0.01]} − {a }
ZO,a a’s Zone of Orientation {b ∈ A |d (a, b) ∈ (0.01, 0.1]}
ZA,a a’s Zone of Attraction {b ∈ A |d (a, b) ∈ (0.1, 0.13]}
θf Target angle θf ∼ U(0, 2π )
∆t Time-step .001
ω Max Turn per time-step 2°
n Influencer angle options 16
Table 3: Symbols and Corresponding Parameters

3 EXPERIMENTS
All experiments used parameters as listed in Table 3.

Coordinated and TSL orientation strategies did not emerge as
practical algorithms for experimentation. Both included substantial
computational costs, with coordinated being unable to run feasibly
due to the nature of maximizing the connections in a pairing. Genter
and Stone perform a brute-force algorithm to find the best possible
set of pairs [7]. This is sufficient in low-densities of influencer agents
but becomes impossible in higher-density conditions such as those
found our default parameters. Even optimization techniques such as
branch and bound are unable to recover the strategies. TSL was not
included due to its substantial increase in computational cost and
lack of significant convergence time reduction compared to other
strategies. TSLwas, however, able to significantly outperform all but
OSL and AOSL (which it outperformed slightly) in less restrictive
conditions of infinite turning speed (ω = π ) and omission of the
zones of repulsion and attraction. These conditions are those found
in Genter and Stone where TSL performed very well [7].

Every combination of influence model, influencer selection, and
influencer orientation strategy was tested for both initially aligned
and unaligned conditions. Data presented in Tables 4, 5, and 6
present flock convergence time means and standard deviations
averaged over 500 simulations for each of these cases, alongwith the
average performance of particular strategies across combinations. A
graphical representation of mean convergence times for the aligned
and unaligned cases are shown in Figs 2 and 3 respectively.

4 DISCUSSION
4.1 Both Aligned and Unaligned Cases

4.1.1 Influence model hierarchy. Likely the most obvious trend
in the results is the overwhelming determinant of performance that
is the influence model. Essentially, productive alignment work is
only done by the effects of orientation; attraction and repulsion gen-
erally disorient a flock member. Thus models are essentially ’easier’
whenever the effects of attraction and repulsion are minimized.
This is mostly the case in the distinct zonal model, where agents
will always try to enter the orientation zone of another agent if

Selection- Mean / Standard Deviation
Orientation Aligned Unaligned

Selection- AB-AOSL 112.7 / 55.4 258.1 / 138.8
Orientation AB-FT 144.0 / 68.2 321.0 / 261.4
Combinations AB-OSL 112.6 / 55.4 271.9 / 215.2

Center-AOSL 126.5 / 67.6 396.7 /148.6
Center-FT 156.4 / 107.1 442.0 / 318.6
Center-OSL 129.3 / 72.8 458.3 / 313.6

Periphery-AOSL 117.0 / 57.3 249.7 / 148.3
Periphery-FT 152.1 / 69.0 311.3 / 237.0
Periphery-OSL 116.3 / 57.0 250.4 / 146.6
K-Means-AOSL 111.8 / 54.7 258.9 / 128.2
K-Means-FT 140.5 / 65.4 306.7 / 179.0
K-Means-OSL 111.8 / 54.7 271.4 / 205.2

Average AB 123.1 / 59.7 283.7 / 205.1
Selection Center 137.4 / 82.5 459.0 / 343.0

K-Means 121.4 / 58.3 279.0 / 170.8
Periphery 128.5 / 61.1 270.5 / 177.3

Average AOSL 117.0 / 58.8 310.8 / 203.0
Orientation FT 148.3 / 96.4 345.3 / 249.0

OSL 117.5 / 60.0 313.0 / 220.2
Table 4: Distinct zonal influence model convergence time
means and standard deviations

Selection- Mean / Standard Deviation
Orientation Aligned Unaligned

Selection- AB-AOSL 124.0 / 66.3 780.4 / 623.4
Orientation AB-FT 175.3 / 235.2 835.9 / 605.2
Combinations AB-OSL 124.4 / 71.3 782.4 / 576.5

Center-AOSL 567.2 / 969.8 1606.5 / 1426.8
Center-FT 637.9 / 907.0 1569.7 / 1235.1
Center-OSL 547.3 / 832.3 1580.6 / 1205.8

K-Means-AOSL 113.7 / 64.7 826.3 / 634.3
K-Means-FT 156.7 / 176.3 878.0 / 732.0
K-Means-OSL 113.8 / 65.4 880.4 / 811.9

Periphery-AOSL 161.3 / 103.0 684.4 / 477.3
Periphery-FT 303.9 / 299.8 718.2 / 515.2
Periphery-OSL 158.6 / 96.2 698.3 / 618.6

Average AB 141.2 / 124.3 799.6 / 601.7
Selection Center 584.1 / 903.1 1585.6 / 1289.2

K-Means 128.1 / 102.1 861.6 / 726.1
Periphery 208.0 / 166.3 700.3 / 537.0

Average AOSL 241.6 / 301.0 974.4 / 790.5
Orientation FT 318.4 / 404.6 1000.5 / 771.9

OSL 236.0 / 266.3 985.4 / 803.2
Table 5: Inverse zonal influence model convergence time
means and standard deviations

they are not already in one, and when they are able to orient, they
exclusively devote themselves to this task. In the case of inverse
zonal, repulsion and attraction are always present on some level,
making it more difficult to form cohesive flocks. Lastly, the Couzin

5



Figure 2: Average convergence times for every combination of leader selection and orientation strategies, including the average
convergence time of each individual strategy in trials where all starting agents were nearly aligned.

Figure 3: Average convergence times for every combination of leader selection and orientation strategies, including the average
convergence time of each individual strategy.

et al. model always forces an agent to devote itself largely to attrac-
tion or repulsion, and orientation is rarely given full control. The
flock tends to collapse upon itself in this model and is very difficult
to steer. Although these effects largely negate the occurrences of
isolation, it makes a turn very difficult to accomplish.

4.1.2 Adaptive orientation algorithms suffer with center selec-
tion. Adaptive orientation algorithms AOSL and OSL use predictive
models to guide their choices. These predictive models rely on as-
sumptions which are not necessarily correct, and which have a
greater magnitude of error especially when center selection is used.
Pertinent assumption 1 is shared by both algorithms: other influ-
encer agents will adopt the same choice as the one being considered
in the algorithm. There is a reason to believe this so long as the
neighborhoods of the two influencer agents are similar. Assumption
2 belongs to OSL only, which is precisely the assumption eliminated
by AOSL: influencer agents will be influenced in a similar manner
as follower agents, and it is equally useful to influencer agents as
follower agents. AOSL solves this by skipping over other influencer
agents when trying to minimize error, as their alignment does not
determine convergence, and they do not listen like follower agents.
Both these assumptions are used more often when there is a high

amount of influencer agents in an influencer agent’s zone of orien-
tation. This is, of course, the case in the center placement strategy,
which initially places leaders in a dense circle. As assumptions are
frequently violated, the performance of the adaptive algorithms
suffer and the simpler non-adaptive algorithm FT performs better
than usual only by comparison.

4.1.3 Adaptive orientation algorithms are strong in distinct zonal,
are weakened in inverse zonal, and are weakest in Couzin et al. zonal.
This is also an issue of assumption within the predictive models of
AOSL and OSL. In this case, the assumption made by both is that an
agent’s zone of orientation is the only contributor to determining
its new velocity. This is exactly the case in the distinct zonal model,
at least when no agent is in its zone of repulsion, making it a valid
assumption in this case, thus not harming performance significantly.
However in the case of Couzin et al. zonal, and less so for inverse
zonal, this assumption is violated, as section 4.1.1 explains how
orientation is rarely the only determinant for velocity updates in
these models, and this effect is more pronounced in the former
case. The violation of assumptions necessarily leads to a decrease
in performance, which is seen in the results.
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Figure 4: Average convergence time for different selection
strategies for each world, including the standard deviation
and min and max values on a logarithmic y axis.

Selection- Mean / Standard Deviation
Orientation Aligned Unaligned

Selection- AB-AOSL 2471.8 / 2264.9 3182.7 / 2588.7
Orientation AB-FT 2232.5 / 2036.9 2925.0 / 2372.1
Combinations AB-OSL 2227.8 / 2165.4 3244.0 / 2717.2

Center-AOSL 2448.8 / 2118.1 1986.9 / 2038.4
Center-FT 2019.5 / 1993.1 1616.7 / 1614.7
Center-OSL 2571.0 / 2165.6 1748.3 / 1899.4

K-Means-AOSL 2120.5 / 1934.1 2974.4 / 2509.8
K-Means-FT 1972.9 / 1858.4 2720.1 / 2392.5
K-Means-OSL 2125.7 / 1907.5 2807.7 / 2515.8

Periphery-AOSL 2874.6 / 2516.3 3903.7 / 2751.7
Periphery-FT 2581.4 / 2150.5 3416.6 / 2425.5
Periphery-OSL 2632.6 / 2467.2 3760.3 / 2827.1

Average AB 2310.7 / 2155.7 3117.2 / 2559.3
Selection Center 2346.4 / 2092.3 1784.0 / 1850.8

K-Means 2073.0 / 1900.0 2834.1 / 2472.7
Periphery 1861.5 / 1576.0 3693.5 / 2668.1

Average AOSL 2478.9 / 2208.4 3011.9 / 2472.2
Orientation FT 2201.6 / 2009.7 2669.6 / 2201.2

OSL 2389.3 / 2176.4 2890.1 / 2489.9
Table 6: Couzin et al. zonal influence model convergence
time means and standard deviations

Figure 5: Average convergence time for different selection
strategies for eachworldwith agents starting nearly aligned:
including standard deviation and min and max values with
a logarithmic y axis.

4.2 Unaligned Case
4.2.1 General AOSL dominance over OSL. AOSL makes a gen-

eral improvement over OSL: it ignores trying to correct the orien-
tation of other influencer agents and focuses on followers. Thus
in principle, there should be a general pattern of improvement
when comparing the performance of AOSL against OSL, and this
is true, but not without exception. Exceptions found within the
unaligned case include instances with high concentrations of in-
fluencer agents (center selection and the Couzin et al. influence
model). Strangely, these are instances where we would expect the
highest improvement over OSL, as there is a higher concentration
of influencer agents to filter out so that follower agents can be
prioritized. Perhaps the removal of the attempt to influence other
influencer agents provides much less gain than the loss caused by
the greater effect of the faulty assumption that is more pronounced
in AOSL in this case: that other influencer agents acting on neigh-
bors will adopt the same velocity choice. The trends between AOSL
and OSL within the aligned case are less pronounced and muddled
with exceptions that follow no discernible pattern.

4.2.2 Periphery placement is exceptional in inverse zonal. More
than any other physical model, inverse zonal suffered from frag-
mentation of the flock during experimentation. Fragmentation is
essentially when the flock splits into two or more distinct groups
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until eventually reforming, adding a sizable delay in convergence.
The periphery selection algorithm clearly places influencer agents
in vantage positions to contain possible wayward follower agents,
thus it performs the very best in cases of high fragmentation risk
(inverse zonal). Knowing this, it would seem center selection would
be expected to be terrible in the inverse zonal model (an expectation
that is met).

4.2.3 Influencer orientation strategies hardly affect performance
in inverse zonal. Mostly this is an illusion caused by balancing
effects and the relative importance of selection compared to orien-
tation strategies. As explained in Section 4.1.3, adaptive orientation
algorithms suffer slightly from the issues caused by their assump-
tions, but still have the advantages of making intelligent choices,
unlike non-adaptive approaches. AOSL and OSL are similar algo-
rithms, and their performances being only slightly different is no
surprise. Lastly, influencer selection is very important particularly
in the case of inverse zonal, as described in section 4.2.2, thus ap-
pearing to minimize the impact of influencer orientation strategies
by comparison.

4.2.4 Center placement performs well in Couzin et. al zonal, but
poorly in distinct and inverse zonal. Fragmentation of the flock is
occasionally an issue for distinct zonal and especially inverse zonal
but not for Couzin et al. zonal as attraction is given such a large
sway even initially when agents are already very close. Thus cen-
ter performs poorly in mitigating fragmentation risk as influencer
agents have little control over agents at the periphery which are
bound to splinter from the bulk, unlike other placement methods
that place some agents specifically on the periphery or at least
near it. Fragmentation is the last issue for Couzin et al. zonal. On
the contrary, excessive cohesion is the problem. Influencer agents
are often separated from the flock as no algorithm considers the
importance of staying inside of the flock by making incremental
changes to a flock which, in this case, has considerable inertia. In-
stead, they try to rapidly turn the flock through extreme movement.
Influencer agents then rely on chance to place themselves within
the flock again, delaying orientation considerably. Center selection,
by surrounding the influencer agents with follower agents, makes
this separation less common through the boundary created by the
repulsive effects of the follower agent composed outer layer.

4.3 Aligned Case
4.3.1 Aligned is slower than unaligned in the Couzin et al. model

with center selection. The trend of aligned being faster is intuitively
obvious, as there would be less initial fracturing, lost agents, less
repelling agents, and therefore full efforts put toward orientation.
As well, at times, the flock may be near instantly aligned by chance
that the target orientation and initial orientation of the flock are
very close. However, a general problem with Couzin et al. zonal
is that when the flock is already aligned in the wrong direction,
it is incredibly difficult to reorient them back to the desired direc-
tion. It is easiest to turn this style of flock in the starting stages of
collapse, a phenomenon unique to the Couzin et al. zonal model
when all agents head toward the flock’s center of mass due to the
ever-present force of attraction. At this point, the flock is not yet
incorrectly aligned, and it is most susceptible to the guidance of

influencer agents. Additionally, only center selection has all of the
influencer agents positioned properly to take advantage of this ini-
tial absence of inertia during the collapse, as the influencer agents
are placed directly on the center of collapse, which again, is the
center of mass of the flock. This gives us our unexpected excep-
tion: that under specific circumstances (namely center selection and
Couzin et al. zonal), initial alignment is a detriment to convergence
to the proper alignment.

4.3.2 Perimeter selection strategy performs poorly. Fragmenta-
tion is not an issue in the aligned case, so the advantages provided
by the perimeter selection strategy (described in 4.2.2) on this front
are negated in the cases of inverse and distinct zonal. In the case
of Couzin et al. zonal, the unique initial effect of flock collapse
leaves influencer agents selected on the edges of the initial flock
completely separated from the flock, causing poor performance.
Additionally, perimeter selection concentrates the influencer agents
in specific areas, limiting their influence over the entire flock. So for
every influence model, there are reasons that perimeter selection
either has its advantages negated or a new problem created, causing
its poor performance overall when agents are initially aligned.

5 CONCLUSIONS AND FUTUREWORK
We experimented with different approaches for effective flock con-
trol. We tried all possible combinations of two previously used
and one novel influencer selection schemes and two existing and
two novel orientation schemes in two existing and one new world
(influence models) for both initially aligned and unaligned flocks.
Performance is measured in terms of the time steps taken for the
flock to converge to the desired orientation. Many interesting and
subtle takeaways resulted from the complexity of the interactions
between these three aspects, alongside other generalizations that
can be made across individual combinations. Notable interactions
include the importance of peripheral placement in unaligned initial
conditions, the overall dominance of adaptive orientation algo-
rithms, and the incompatibility of adaptive orientation algorithms
and center placement (due to high influencer agent concentration).
These are important and complex implications for the efficacy of
flock control that we have not seen investigated within the exist-
ing literature, which often assume a single and simple physical
world, and only a single orientation or placement strategy. Physical
worlds played a dominant role in determining the effectiveness of
approaches, leading us to the conclusion that the study of flock
control relies entirely on the accuracy of the physical model which
simulates the flock. It is therefore more urgent that more study is
put forth into the physical models often used in flock control, as
its inaccuracy risks the efficacy of the field of study. In harmony
with this conclusion, it was observed that adaptive orientation algo-
rithms thrived to the degree that their predictive models reflected
the reality of the model, with simpler methods being preferred for
more complicated physical worlds.

The next step of this research would be to characterize abstract
features that would be predictive of successful leader placement and
orientation strategies. Eventually, the forgiving looping nature of
the physical world would have to be eliminated, such that influencer
agent strategies would be forced to be developed that are resistant
to flock separation.
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