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ABSTRACT
Multiagent reinforcement learning has shown its potential for tack-

ling real world problems, like traffic. We consider the toll-based

route choice problem, in which self-interested drivers (agents) need

to repeatedly choose (commuting) routes that minimise the travel

costs between their origins to their destinations. One of the major

challenges here is to deal with agents’ selfishness when competing

for a common resource, as they tend to converge to a substantially

far from optimum equilibrium. In the case of traffic, this translates

into higher congestion levels. Along the years, the use of tolls has

been advocated as a means to tackle this issue. However, existing

approaches typically assume that (i) drivers have homogeneous

preferences, and that (ii) collected tolls are kept for the traffic author-

ity. In this paper, we propose the Generalised Toll-based Q-learning

algorithm (GTQ-learning), a multiagent reinforcement learning

algorithm capable of realigning the agents’ heterogeneous prefer-

ences with respect to travel time and monetary expenses. Firstly, we

introduce the toll-based route choice problem with preferences and

side payments. Building upon such a problem, GTQ-learning works

by neutralising agents’ preferences, thus ensuring that congestion

levels are minimised regardless of agents’ selfishness levels. Fur-

thermore, GTQ-learning achieves δ -approximated budget balance

by redistributing a fraction δ of the collected tolls and keeping the

rest for maintaining the roads. We perform a theoretical analysis

of GTQ-learning, showing that it leads agents to a system-efficient

equilibrium, and provide supporting empirical results, evidencing

that GTQ-learning minimises congestion on realistic road networks.

KEYWORDS
multiagent reinforcement learning; route choice; marginal-cost

tolling; budget balance; heterogeneous preferences; equilibrium;

system optimum

1 INTRODUCTION
Multi-agent systems (MAS) offer a powerful paradigm for mod-

elling distributed settings that require robust, scalable, and often

decentralised control solutions. MAS applications vary over a large

range of domains, out of which a few staple examples are traffic

optimisation [15], electrical grid management [14, 18], Internet

of Things [6, 38], and health-care [36]. Despite its numerous ad-

vantages, the MAS framework also introduces challenges such as

the necessity of agents’ coordination, or the issue of reaching an

efficient equilibrium in a decentralised manner.

Whenmultiple rational agents share the same environmentwhile

trying to optimise their own utility, the result is usually a poor sys-

tem performance that does not benefit any of the participating

components. In other words, from a game theoretic perspective,

allowing agents to exhibit selfish behaviour usually leads to a so-

called user equilibrium (UE), or Nash equilibrium (NE). This situa-

tion is characterised by the fact that agents cannot improve their

personal utilities by unilaterally changing their strategy. This comes

in contrast to what a desired equilibrium for the system as a whole

would be, namely the system optimum (SO). In order to quantify

the system’s loss in performance between the UE and SO, we can

use the price of anarchy (PoA) [21]. PoA can thus be defined as the

ratio of the total cost under NE to that of the SO and, ideally, we

prefer the PoA to be as close as possible to 1.

For this current work we focus on the transportation domain.

Addressing the optimality of traffic networks has become a critical

endeavour [23], as drivers face road congestion on a daily basis in

every major city of the world. Traffic networks can be modelled

as a MAS, where drivers represent self-interested agents that are

all competing for a common resource. Studies on real-world road

networks have shown that the PoA is usually around 1.3, meaning

that drivers waste on average 30% extra time due to lack of coor-

dination [48]. The approach we consider here for mitigating the

effects of straying from system optimality is collecting tolls [9].

We would like to point out two important aspects of toll-based

methods that are typically neglected in other models or learning

mechanisms. To begin with, the introduction of tolls transports the

problem into a multi-objective realm where one should consider

the agents’ valuation of two objectives: travel time and monetary

cost. Secondly, the introduction of dynamic tolls allows the traf-

fic manager to strategically set values so as to improve its own

profit in detriment of the system’s performance. We tackle both

aspects by introducing user preferences in the problem model, and

by incorporating an explicit tax return mechanism to the users and

studying its effect on the final outcome.

In this work, we present an extension of the toll-based route
choice problem (TRCP) that includes the agents’ valuation of two

cost components: time and money. Furthermore, we include a toll

redistribution mechanism, such that a designated fraction of the

collected taxes are equally redistributed among the contributing

agents. We approach the problem from a multi-agent reinforcement

learning (MARL) perspective and design Generalised Toll-based Q-
learning (GTQ-learning) for coping with the new challenges. We

model the taxes using marginal-cost tolling (MCT) [32], such that

each driver is charged proportionally to the cost it imposes on

others. This approach is known for aligning the UE to the SO and

has been shown to converge when used as a reward for Q-learning

[41] in a MARL setting [35]. The main idea behind our proposed

algorithm is to model theMCT rewards such that the heterogeneous

preferences of the agents are neutralised (i.e., so that agents are



indifferent between time and money). To the best of our knowledge,

this is the first toll-based MARL approach able to neutralise agents’

heterogeneous preferences, while providing tax return and still

guaranteeing convergence to an equilibrium aligned to the SO.

In particular, the main contributions of this work can be sum-

marised as follows: (i) we introduce the toll-based route choice

problem with preferences and side payments (TRCP+PP), which

extends TRCP with heterogeneous preferences and a tax return

mechanism; (ii) we design the Generalised Toll-based Q-learning
to solve the TRCP+PP; (iii) we perform a theoretical analysis of

GTQ-learning, showing that it reduces the TRCP+PP to the TRCP,

thus converging to the SO, and achieves approximated budget bal-

ance; (iv) we perform an extensive experimental evaluation, whose

results support our theoretical findings.

The rest of the paper is organised as follows. Background infor-

mation is introduced in Section 2. We formulate the TRCP+PP in

Section 3, and our GTQ-learning algorithm in Section 4, together

with a theoretical analysis of our approach, followed by experimen-

tal validations in Section 5. We discuss related work in Section 6.

Concluding remarks are presented in Section 7.

2 BACKGROUND
This section presents the theoretical background upon which we

build our work.

2.1 The Toll-Based Route Choice Problem
We start by introducing the traditional version of the toll-based

route choice problem (TRCP), that we further extend in Section 3.

An instance of the TRCP is given by P = (G,D, f ,τ ), where:

• G = (N ,L) is a directed graph representing a road network,

where the set of nodes N represents the intersections and

the set of links L represents the roads between intersections.

• D is the set of drivers, each of which with an OD pair that

corresponds to its origin and destination nodes.

• fl : xl → R
+
is the travel time of link l with respect to the

number of vehicles xl using it.
• τl : xl → R

+
is the toll charged on link l .

The cost a driver experiences on link l is given by the sum

between the time and monetary components:

cl (xl ) = fl (xl ) + τl (xl ). (1)

Observe that Equation (1) is the typical modelling of the problem, as-

suming that drivers preferences are uniform (time and money have

the same importance) and homogeneous (the previous condition

applies to all drivers).

In the context of the route choice problem, a route R is any

sequence of links connecting an origin to a destination. The cost of

a route R is computed as the sum of the costs of the composing links:

CR =
∑
l ∈R

cl . (2)

The solution of the route choice problem can be described from

two perspectives. The system optimum (SO) corresponds to the

point where the average travel time is minimum. In contrast, the

user equilibrium (UE) corresponds to an equilibrium point where

all routes (of the same OD pair) being used have the same cost and,

thus, no driver benefits by unilaterally changing route. The UE is

equivalent to the Nash Equilibrium (NE) and, as such, is a conse-

quence of the selfish behaviour of the agents and typically stems

poor results. Hence, from the system’s perspective, the desired

outcome corresponds to the SO.

The idea of charging tolls was introduced to minimise the effects

of selfish behaviour. In this work, we model the tolls τl from a

marginal-cost tolling (MCT) perspective [32], where each agent is

charged proportionally to the cost it imposes on others, as follows:

τl = xl · f
′
l (xl ), (3)

where f ′ is the derivative of f . Previous results have shown that,

given an instance P of the (toll-free) route choice problem, if we

apply MCT to it—thus obtaining an instance P ′ of the toll-based
route choice problem—then the UE in P ′will be equivalent to the SO
in P . In other words, the UE with MCT achieves the same average

travel time as the SO of the original problem [3].

Now that we have outlined the problem setting, we can start dis-

cussing about possible methods for finding a solution. We opt here

for a learning-based perspective and model drivers as autonomous

decision makers. Other methods such as mathematical optimisa-

tion (e.g., simplex algorithm) are also valid here, however, next to

the centralisation requirement, resulting equilibrium points are not

always straightforward to translate to real-world settings (e.g., com-

puted flows are not always integer numbers). We thus introduce

next the reinforcement learning approach we use for this work.

2.2 Reinforcement Learning
Reinforcement Learning [40] allows agents to learn how to solve

a task through interactions with their environment, in a trial-and-

error fashion, using a numerical reward signal as guidance. The en-

vironment is typically modelled as aMarkov decision process (MDP)

M = (S,A,T ,γ ,R) [33], where S,A are the state and action spaces,

T : S × A × S → [0, 1] is a probabilistic transition function, γ is a

discount factor determining the importance of future rewards, and

R : S ×A × S → R is the immediate reward function.

In the context of the route choice problem, we have a set of

independent learning agents, each trying to find the best route be-

tween their desired origin-destination (OD) pair. Whenever a driver

chooses a route, it will inevitably reach its destination, thus ren-

dering the state definition irrelevant here. Therefore, this problem

is typically modelled as a stateless MDP. The reward
1
for taking

action a ∈ A can then be denoted as rt (a) = −CR , with a = R, the
selected route and CR its corresponding cost.

In ourmulti-agent setting, each independent agent uses Q-learning

[41] as a base method to learn the expected returnQ(a) of selecting
each action a while balancing exploration (gain of knowledge) and

exploitation (use of knowledge). In particular, after taking action a
at time step t and receiving reward rt (a), the stateless Q-learning
algorithm updates the estimate of Q(a) as:

Qt (a) = (1 − α)Qt−1(a) + αrt (a), (4)

where α ∈ (0, 1] is the learning rate. As for exploration, a typical

strategy is ϵ-greedy, in which the agent chooses a random action

with probability ϵ or the best action otherwise. The Q-learning

1
Observe that, although the reward an agent receives is formulated as a function of its

single route, it actually depends on the flow of vehicles on the links that comprise that

route. This is expressed by means of the travel time function introduced in Section 2.1.
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algorithm is guaranteed to converge to an optimal policy if all

state-action pairs are experienced an infinite number of times [42].

3 EXTENDING THE TOLL-BASED ROUTE
CHOICE PROBLEM

In this section, we extend the toll-based route choice problem (TRCP)

seen in Section 2 to more general settings. In particular, we tackle

two important aspects that are typically neglected in the literature,

namely drivers’ preferences (with respect to time and money) and

tax return (from collected tolls). We call this model the toll-based
route choice problem with preferences and side payments (TRCP+PP).
In short, our model allows agents to have individual, heterogeneous

preferences, and allows the system to redistribute the collected tolls

among the agents without affecting the equilibrium.

As seen in previous sections, route choice models typically as-

sume that drivers give the same weight to their two—possibly

independent—objectives: time and money. Such an assumption,

however, can be a quite unrealistic and restrictive for two reasons.

Firstly, it does not allow drivers to express preferences of one ob-

jective over another. For instance, a driver may prefer faster trips

even though this may increase its monetary expenses. Secondly, it

implicitly assumes that drivers’ preferences are homogeneous, i.e.,

that all drivers have the same preferences. Nonetheless, in practice,

such preferences are more likely to be heterogeneous, since some

drivers may prefer faster trips regardless of the monetary costs,

whereas others may prefer slower trips as soon as they are cheaper.

Therefore, it is more realistic to assume that drivers’ objectives are

not completely uncoupled from each other.

In this work, we tackle heterogeneous preferences by reformulat-

ing the cost of links (from Equation (1)) as
2
:

ci,l = (1 − ηi )fl + ηiτl , (5)

where ηi ∈ [0, 1] defines driver i’s preference of money over

time. Specifically, η represents a driver’s willingness to spend more

money so as to travel faster: the higher ηi is, the more driver i
prefers to save money (instead of travelling faster). Observe that

under the above formulation, the cost perception of a given link

l now changes from one agent to another, depending on their in-

dividual preferences. Nevertheless, we remark that Equation (5)

generalises Equation (1), which in turn can be seen as a specific

case
3
of our modelling when η = 0.5 for all drivers.

Another important aspect to consider in the toll-based route

choice problem is that of tax redistribution. In practice, the ratio-

nale behind charging tolls on a road is to cover its operational costs

(which frequently also includes some profit to the network man-

ager). By introducingMCT (or even other tolling schemes), however,

the amount of collected tolls can be arbitrarily high. Hence, redis-

tribution can be useful to avoid revenue excess and thus to prevent

the traffic manager from strategically setting tolls so as to minimise

its own profit. In this sense, we also introduce side payments on the

cost formulation as follows:

ci,l = (1 − ηi )fl + ηiτl − ρψi , (6)

2
For clarity, hereinafter, we omit the flows x on the links’ cost equations, thus using

just c , f , and τ rather than c(x ), f (x ), and τ (x ).
3
To be more precise, cl (xl ) still needs to be multiplied by 2 for Equation (5) to produce

the same results as Equation (1). Nevertheless, the results are still equivalent.

where ρψi represents the tax return to agents that have aspect

ψi ∈ Ψ in common with agent i (which we discuss next). We em-

phasise that ρ represents side payments [1, 20], which by definition

are not affected by agents’ preferences η. In practice, such side pay-

ments could be seen as non-monetary compensations [20]. Thus,

the model remains general enough to accommodate a broad (rather

than monetary-based only) class of tax return mechanisms.

Observe that side payments are defined based on Ψ. The ra-

tionale here is to define side payments to agents with particular

aspects in common (e.g., agents using the same routes or belonging

to the same OD pair). In particular, Ψ could define side payments at

the global level (e.g., tolls collected on all links evenly distributed

among all agents), at the individual level (e.g., each agent receives

a different fraction of the total collected tolls), or anything between

them (e.g., tolls collected in a particular link are evenly shared

among all agents that used it). We highlight that, although Ψmakes

the side payments definition more flexible and general, an arbi-

trary definition of Ψ may change the Nash equilibrium
4
. Ideally,

however, side payments should not change the equilibrium, as this

may deteriorate the overall traffic conditions. To avoid this prob-

lem, tolls collected on a link should only be returned to the drivers

that affected (either positively or negatively) the toll value on that

particular link. Hence, Ψ needs to be carefully defined so that such

constraint is not violated. In Section 4.2, we define Ψ to represent

the set of origin-destination (OD) pairs, whereψi ∈ Ψ represents

driver i’s OD pair, thus meaning that the tolls collected from agents

of a particular OD pair are redistributed among that agents only.

We remark that, in the route choice problem, agents’ utilities

(or rewards) are associated with the routes they take, i.e., a route’s

utility equals its negative cost. Building upon the above cost defini-

tions, we can define the cost of a given route R from the perspective

of agent i (and its preference ηi ) as follows.

Ci,R =
∑
l ∈R ci,l

=
∑
l ∈R (1 − ηi )fl + ηiτl − ρψi

=
∑
l ∈R (1 − ηi )fl +

∑
l ∈R ηiτl − ρψi

= (1 − ηi )fR + ηiτR − ρψi

(7)

Again, we emphasise that our formulation generalises that of

MCT. In particular, MCT is a special case when ηi = 0.5 for each

agent i ∈ D and ρψ = 0 for allψ ∈ Ψ.

4 GENERALISED TOLL-BASED Q-LEARNING
In this section, we present the generalised toll-based Q-learning

algorithm (GTQ-learning, for short), which leads independent Q-

learning agents with heterogeneous preferences towards a system-

efficient equilibrium. The algorithm accounts for preferences by

making agents indifferent to time and money (Section 4.1), and en-

sures δ -approximated budget balance using a revenue redistribution

mechanism (Section 4.2).

Initially, we remark that the problem is modelled as a stateless

MDP and that each driver i ∈ D is represented by an agent. The

set of routes of agent i is denoted by Ai = {a1, . . . ,aK }. The re-
ward r (ati ) that agent i receives for taking route ati at episode t
corresponds to the negative cost of such route, which is given by

4
A naïve toll redistribution could even change the nature of the problem, incentivising

agents to maximise their side payments rather than to minimise their travel costs.
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Algorithm 1: Generalised Toll-based Q-learning

input :D ; ηi and ψi (for every driver i ∈ D); A; λ; µ ; δ ; T ; β and Fl
(for every link l ∈ L)

1 Q (ai ) ← 0 ∀i ∈ D, ∀ai ∈ Ai ; // initialise agents’ Q-tables

2 for t ∈ T do
3 α ← λt ; ϵ ← µt ;
4 for i ∈ D do
5 ati ← select action (route) using ϵ -greedy;
6 end
7 f , τ̊ ← compute travel time and marginal cost of links and routes;

8 for i ∈ D do
9 τi,a ←

τ̊a+fa ·ηi
ηi

, with a = ati ; // compute i’s toll

10 end
11 for ψ ∈ Ψ do
12 rψ ←

∑
i∈D :ψi=ψ τi ; // compute revenue from OD ψ

13 ρψ ←
δ ·rψ
xψ

; // compute side payment ψ ’s agents

14 end
15 for i ∈ D do
16 r (ati ) ← (1 − ηi )fati

+ ηiτati
− ρψi ; // i’s reward

17 Q (ati ) ← (1 − α )Q (a
t
i ) + αr (a

t
i ) ; // update Q-table

18 end
19 end

Equation (7). The drivers’ objective is to maximise their cumulative

reward. An overview of GTQ-learning is presented in Algorithm 1.

The basic cycle of GTQ-learning can be described as follows.

At each episode, every agent selects an action (using the ϵ-greedy
exploration strategy). Travel times and tolls are then computed for

each link of the road network, and side-payments are computed

for each OD pair. Finally, agents’ Q-values are updated using the

costs (as formulated by Equation (6)) of the corresponding routes.

As usual, learning and exploration rates are decayed every episode.

This whole process is repeated for each subsequent episode.

One of the major contributions of this paper is to show that,

by using GTQ-learning, agents are guaranteed to converge to a

system-efficient equilibrium, i.e., a system optimum from which no

agent benefits by deviating from. This is shown in the next theorem.

Theorem 4.1. Consider an instance P of the toll-based route choice
problem with preferences and side payments. If GTQ-learning is used
by all agents, then drivers converge to a system-efficient equilibrium
in the limit. Thus, the price of anarchy is 1 in the limit.

Proof. We can prove this theorem by showing that GTQ-learning

reduces the toll-based route choice problem with preferences and

side payments (TRCP+PP) to the traditional toll-based route choice

problem (TRCP). The TRCP is analogous to congestion games, for

which a user equilibrium always exist, and best response dynamics

always converge [30]. In our context, since routes’ costs are used as

rewards and learning and exploration rates are decaying, we have

that agents best respond to the perceived traffic conditions [35].

To show that GTQ-learning reduces TRCP+PP to TRCP, two

conditions should be satisfied: (i) preferences and (ii) side payments

affect neither the equilibrium nor the system optimum. By not

affecting the UE and the SO we mean that, as compared to MCT

(on TRCP), GTQ-learning (on TRCP+PP) should achieve the same

average travel time and that agents should choose the same routes.

Firstly, we remark that, by definition, the system optimum corre-

sponds to the minimum average travel time (considering all drivers).

Given that GTQ-learning can only manipulate toll values (not travel

times), then the system optimum is not changed at all. Thus, we can

say that our algorithm does not affect the SO. The user equilibrium,

on the other hand, needs to be analysed in particular for each of

the above conditions.

In terms of drivers’ preferences, in Section 4.1 we show that

GTQ-learning makes agents indifferent between time and money.

In other words, tolls are adjusted to compensate drivers’ heteroge-

neous preferences, thus leading such agents to behave as if η = 0.5.

This means that the costs resulting from GTQ-learning differ from

the original ones (of the toll-based route choice problem without

preferences) only by a common factor. Consequently, the agents’

preference ordering over the set of routes is preserved, meaning

that the user equilibrium is not affected.

Regarding the side payments, in Section 4.2 we prove that the

equilibrium is not affected when the tolls collected on a given OD

pair are redistributed among the agents from that OD pair only. As

for the preferences, this means that the agents’ preference ordering

over the routes is preserved, thus leaving the UE unchanged.

Therefore, our algorithm does not affect the UE. Consequently,
as the two initial conditions are satisfied, GTQ-learning converges

to a system-efficient equilibrium. □

The next subsections describe in detail how GTQ-learning works.

In Section 4.1, we present the tolling scheme that makes agents

indifferent between time and money. In Section 4.2, we introduce

the toll redistribution mechanism based on OD pairs.

4.1 Tolling to Make Agents Indifferent to η
The tolling mechanism we introduce with GTQ-learning extends

the concept of marginal-cost tolling (MCT) to agents with hetero-

geneous preferences. We remark that the idea behind collecting

marginal-cost tolls is to enforce agents to choose actions that min-

imise the systems’ average travel time. Indeed, MCT guaranteedly

aligns the UE to the SO so that the resulting equilibrium has min-

imum average travel time [3]. Nonetheless, when heterogeneous

preferences are introduced, the story is completely different. The

point is that, for MCT guarantees to hold, the following equality

should be satisfied:

∀l ∈ L,∀η ∈ [0, 1], fl + τ̊l = ((1 − η)fl + ητl ) · σ , (8)

where τ̊l denotes the marginal-cost toll on link l (as defined by

Equation (3)), and σ = 2 is a constant factor accounting for the cost

decrease given that η ∈ [0, 1]. In other words, the above equality

requires the cost of a link under the TRCP to be the same as under

the TRCP+PP, regardless of the agents’ preferences. However, the

above equality only holds if η = 0.5 for all agents or if the f is

linear (so that f = τ ), which are rarely the case [10]. In other words,

when preferences are introduced, MCT is no longer guaranteed to

align the UE to the SO.

In this work, we devise a tolling scheme that neutralises agents’
preferences while keeping the MCT equality valid. In particular,

4



the toll charged from agent i for using link l is defined as:

τi,l =
τ̊l + fl · ηi

ηi
, (9)

with
5 ηi ∈ ]0, 1] for every agent i ∈ D. By using the above tolling

scheme, we can ensure a proper alignment of the UE to the SO

regardless of the agents’ preferences distribution, as shown in the

next theorem.

Theorem 4.2. GTQ-learning’s tolling scheme neutralises agents’
preferences, thus achieving the same system-efficient equilibrium as
marginal-cost tolling without preferences.

Proof. We can prove this theorem by showing that GTQ-learning

does not invalidate the MCT equality from Equation (8). In partic-

ular, it is sufficient to prove that the cost perceived by any agent,

regardless of its preference, will be the same as if it had no pref-

erences at all (i.e., just like in the original TRCP). In this sense,

using Equation (9) with σ = 1 (given that GTQ-learning neutralises

the tolls), we can rewrite the right-hand side of the equality from

Equation (8) as follows:

(1 − ηi )fl + ηiτi,l = (1 − ηi )fl + ηi
(
τ̊l+flηi
ηi

)
= (1 − ηi )fl + τ̊l + flηi
= fl − flηi + τ̊l + flηi
= fl + τ̊l .

Thus, our formulation does not invalidate the MCT equality,

which completes the proof. □

We highlight that, as a side-effect of the heterogeneous prefer-

ences, the tolls charged by GTQ-learning can be higher than those

charged by MCT. Nonetheless, as shown in the next theorem, we

can bound this difference to a reasonable factor.

Theorem 4.3. For univariate, homogeneous polynomial travel
time functions, the toll charged by GTQ-learning from agent i is at

most O
(

2

ηi

)
worse than that charged by MCT.

Proof. A toll τ charged by GTQ-learning is at most
τ
τ̊ times

higher than a toll τ̊ charged by MCT. We will call this the toll

deterioration ratio.

Before we start developing such ratio, we remark that τ̊ is based

on travel time function f , as seen in Equation (3). In this sense, it

is useful to identify the relationship between τ̊ and f . We focus on

univariate (single variable), homogeneous (all terms with the same

degree) polynomial travel time functions, which encompass the

most common functions in traffic engineering [35]. Such functions

can be defined as f = axk +b, whose marginal cost is τ̊ = kaxk . In
this sense, can say that:

f ≤ τ̊

axk + b ≤ kaxk ,

which holds asymptotically for x ≥ k
√

b
a(k−1)

.

5
We emphasise that having a left-open interval ]0, 1] for the preferences distribution

is not a restrictive assumption, since any left-closed interval [0, 1] could be easily

normalised into [x, 1], for an arbitrarily small x > 0.

Now, we can simplify the toll deterioration ratio as follows:

τ
τ̊ =

(
τ̊+f ηi
ηi

)
·

(
1

τ̊

)
=

τ̊+f ηi
τ̊ ηi

≤
τ̊+f
τ̊ ηi

(assuming η = 1 on the dividend)

≤
2 max(τ̊ ,f )

τ̊ ηi
≤ 2τ̊

τ̊ ηi
(since τ̊ ≥ f )

≤ 2

ηi .

Therefore, the tolls charged by GTQ-learning are at most
2

ηi
worse than those charged by MCT. □

Finally, observe that GTQ-learning relies on the agents’ prefer-

ences to compute the tolls. A problem that might arise here is that

of agents misreporting their preferences in order to pay less tolls.

In this work, without loss of generality, we avoid this problem by

assuming that agents truthfully report their preferences. Alterna-

tively, misreporting could be detected and avoided by punishing

agents whose reported preferences do not match the selected routes.

Nonetheless, we left such enforcement mechanisms for future work.

4.2 Redistributing Collected Tolls
As described in Section 3, the idea behind charging tolls is to cover

the costs associated with maintaining the road infrastructure, while

keeping some profit for the network manager. The introduction

of marginal-cost tolls, nonetheless, can increase the amount of

collected tolls far beyond what is necessary, which may be good

for the network manager, but not for the drivers. In fact, a self-

interested manager could strategically set tolls so as to maximise its

own profit in detriment of the systems’ performance. In this section,

we avoid this problem by keeping a (maximum) fraction 1 − δ of

the tolls for operational costs/profit, and redistributing the excess

revenue δ among drivers as side payments, with δ ∈ [0, 1]. GTQ-
learning is then said to achieve δ -approximated budget balance.

Intuitively, side payments can be seen as a compensation for

drivers that take socially beneficial routes. For instance, consider

the network of Figure 1, assuming that we have two agents. From

the example, if each agent takes a different route, then the one

using routeA ends up travelling slower than the other (even though

both face the same cost). However, we can easily check that—from

the global perspective—this is actually good (in fact, this is the

system optimum). In this sense, we say that using routeA is socially

desirable. As for the side payments, now assume that δ = 1.0 and

that the total collected tolls (i.e., 1) are equally divided among all

agents (i.e., each agent receives 0.5 as side payment). In this case,

the agent using route A ends up with a profit of 0.5 whereas agent

using B ends up with a profit of (−1 + 0.5) = −0.5 (where −1 is the

toll it already paid). Clearly, part of the tolls paid by the agent using

route B are divided with the agent using the socially-desirable route

A. Therefore, side payments can be seen as a social compensation,

where socially-desirable behaviour may lead to some profit. As

discussed next, however, this does not destabilise the equilibrium.

The side payments defined by GTQ-learning are made at the

level of origin-destination (OD) pairs. Specifically, we use Ψ to

denote the set of all OD-pairs, withψi representing driver i’s OD

5



o d

fA(xA) = 2

τ̊A(xA) = 0

fB (xB ) = xB
τ̊B (xB ) = xB

Figure 1: Example two-routes network with two agents.

pair. In this sense, we can first define the total revenue from the

tolls collected on OD pairψ as follows:

rψ =
∑

i ∈D :ψi=ψ

τi , (10)

where τi is the toll paid by agent i . Based on the total revenue, we

can now define the side payment to agent i as:

ρψ =
δ · rψ

xψ
, (11)

where xψ =
��{i ∈ D | ψi = ψ }�� represents the amount of vehicles

belonging to OD pairψ , and δ denotes the fraction of the revenue

obtained at OD pairψ to be redistributed among the agents of that

OD pair. Recall, at every episode, each agent chooses a single route.

Hence, tolls and side payments are computed once per episode.

The above modelling implies that the tolls collected at a partic-

ular OD pair are only redistributed among the agents of that pair.

The rationale here is that routes from different OD pairs can be com-

pletely independent from each other. In particular, the routes of an

OD pair may have much higher marginal costs than those from an-

other OD pair. Consequently, if the tolls collected from an OD pair

are divided with others, some agents may not be compensated for

their socially-desirable choices. Thus, by tackling such limitation,

our OD-pair-based approach correctly compensates the agents.

Another useful property of GTQ-learning’s side payments is that

they do not affect the equilibrium. This means that our side pay-

ments do not deteriorate the system-efficient equilibrium obtained

by GTQ-learning (without side payments), as shown next.

Theorem 4.4. GTQ-learning’s side payments do not destabilise
the equilibrium.

Proof (sketch). This theorem can be proved by showing that

side payments do not affect the agents’ preference ordering over

the routes. To this end, we remark that under user equilibrium, all

routes from the same OD pair that are being used have the same

cost. Moreover, recall that all drivers from the same OD pair receive

the same side payment. In this sense, at any particular episode,

a side payment can be seen as a constant that, when subtracted

from the cost of all routes, does not change the preference ordering

over these routes. Therefore, as such ordering is preserved, the

equilibrium is not affected. □

When redistributing collected tolls, one also needs to ensure that

side payments do not lead to a loss to the system, otherwise the

traffic manager would have to pay drivers for congesting the net-

work. However, as discussed in the next proposition, side payments

made by GTQ-learning never exceed what it collects from agents.

Proposition 4.5. The sum of side paymentsmade byGTQ-learning
never exceeds its total revenue.

Proof. For the sake of contradiction, assume that there exists

an OD pairψ ∈ Ψ for which:

rψ <
∑

i ∈D :ψi=ψ

ρψi .

Since every agent receives an equal fraction of the redistributed

tolls (see Equation (11)), we can rewrite the above inequality as:

rψ < xψ · ρψi

< xψ ·
( δ ·rψ
xψ

)
< δ · rψ

However, given that δ ∈ [0, 1], we actually have that rψ ≥ δ · rψ ,
which contradicts the initial assumption. □

5 EXPERIMENTAL EVALUATION
5.1 Methodology
In order to validate our theoretical findings, here we empirically

evaluate the performance of GTQ-learning in several road networks

available in the literature
6
, described as follows.

• B1, . . . ,B7
: expansions of the Braess graphs [5, 39]. The Bp

graph has |N | = 2p + 2 nodes, |L| = 4p + 1 links, a single

origin-destination (OD) pair, and d = 4,200 drivers.

• BB1,BB3,BB5,BB7
: also expansions of the Braess graphs,

but with two OD pairs [39]. The BBp graph has |N | = 2p + 6

nodes, |L| = 4p + 4 links, and d = 4,200 drivers.

• OW: synthetic network [31] with |N | = 13 nodes, |L| = 48

links, 4 OD pairs, d = 1,700 drivers, and overlapping routes.

• AN: abstraction of the Anaheim city, USA [17], with |N | =
416 nodes, |L| = 914 links, 38 OD pairs, d = 104,694 drivers,

and highly overlapping routes.

• EM: abstraction of Eastern Massachusetts, USA [49], with

|N | = 74 nodes, |L| = 258 links, 74 OD pairs, and d = 65,576

drivers. Again, the routes are highly overlapped.

• SF: abstraction of the Sioux Falls city, USA [22], with |N | =
24 nodes, |L| = 76 links, 528 OD pairs, d = 360,600 drivers,

and with highly overlapping routes.

We remark that the number of possible routes may be exponen-

tial in the size of the network. To avoid this problem, we follow the

literature and limit the number of routes available to each agent

to the K shortest ones, which we computed using the K-Shortest

Loopless Paths algorithm [47] for each of the OD pairs.

Drivers’ preferences are represented by means of probability

distributions in the interval ]0, 1]. Let P be one such distribution.

Whenever a driver i ∈ D is created, its preference ηi is drawn from

P. To analyse GTQ-learning’s robustness to different preference

distributions, we tested it with one uniform distribution U(0, 1)

and with two normal distributions N(0.5 ± 0.1) and N(0.5 ± 0.5).

In order to test GTQ-learning, we characterise each run as a

particular combination of a network, a preference distribution, and

a set of values for the algorithm’s parameters (see next).We evaluate

the performance of each run by measuring how close the obtained

6
Road networks available at http://github.com/goramos/transportation_networks.
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average travel time is to that of the SO; the closer this value is to

1.0, the better. Each run was repeated 30 times.

The parameters of GTQ-learning were defined as follows. The

number of episodes was set to T = 10, 000. The revenue redistribu-

tionwas defined as δ ∈ {0.1, 0.2, . . . , 1.0}. Learning and exploration
decay rateswere defined as λ, µ ∈ {0.98, . . . , 0.9999} to allow agents

to learn and explore longer. Following the literature, the number of

routes was set as K ∈ {4, . . . , 16}. We selected the best parameters

configurations for further analyses in the next subsection.

In order to better assess our method, we compared it against

toll-based Q-learning [35] and ∆-tolling [37], to which we refer

hereafter as TQ and ∆T, respectively.

5.2 Numerical Results
Table 1 presents the main experimental results, for different prefer-

ence distributions and tax return fractions. Additionally, Figure 2

plots the average travel time evolution along episodes for each of

the considered algorithms in two representative cases. Due to the

lack of space, we omit the results from some parameter combina-

tions, thus concentrating on the most representative results.

Robustness Against Different Preference Distributions. As seen in

Table 1, GTQ-learning was able to converge to a system-efficient

equilibrium regardless of the preferences distribution. This is a con-

sequence of the tolling mechanism, which makes agents indifferent

between time and money. By contrast, the performance of the other

algorithms has deteriorated substantially. The fact is that these

algorithms are subject to agents’ individual perceptions about time

and money. Consequently, agents end up converging to an equilib-

rium that is not aligned to the optimum. This can also be seen in

Figure 2. Therefore, these results corroborate with our theoretical

findings, showing that GTQ-learning effectively neutralises the

agents’ preferences and, thus, converges to the system optimum.

Revenue Redistribution. We have additionally investigated the ef-

fect of having a toll redistribution mechanism, formulated as a

side payments in our system. As it can be observed from Table 1,

side payments do not deteriorate the equilibrium in the case of

GTQ-learning. The reason is that, as discussed in Theorem 4.4, the

introduction of side payments do not affect the agents’ preference

ordering over the available routes. The other algorithms achieved

similar results, although they are still unable to properly align the

equilibrium to the system optimum. Again, these results support

our theoretical analysis, showing that our approach is robust and

flexible enough to accommodate the needs of the traffic authority

with respect to revenue redistribution.

6 RELATEDWORK
The use of tolls to enforce system-efficient behaviour has been

widely explored in the literature [3, 4, 28, 29, 37, 45, 46]. How-

ever, these tolling schemes do not take into account any potential

preferences of the drivers with respect to their time and money

valuation. The idea of heterogeneous preferences has also been

investigated [8, 12, 13, 19, 27] and found to bring harmful effects

if not properly tackled [10]. In general, however, these works take

the role of the traffic manager, which is then assumed to have full

knowledge about drivers’ preferences and to dictate their decisions.

In contrast, we consider the more challenging case of individual

decision-making, where self-interested drivers learn concurrently

(with local, limited knowledge) and, nevertheless, must reach a

system-efficient equilibrium.

Similarly to charging tolls, some works investigated the SO by ex-

plicitly assuming that agents behave altruistically. Chen and Kempe

[7] and Hoefer and Skopalik [16] investigated altruism in routing

games. Levy and Ben-Elia [24] developed an agent-based model

where drivers choose routes based on subjective estimates over their

costs. Nonetheless, whereas tolls can be imposed on agents, altruis-

tic behaviour cannot be assumed or made mandatory [11]. More-

over, these works assume that agents know each others’ payoff to

compute their utilities. Route guidance mechanisms have also been

employed to approximate the SO. These include mechanisms for:

negotiating traffic assignment at the intersection level [25], biasing

trip suggestions [2], allocating routes into abstract groups that offer

more informative cost functions [26, 34], etc. However, in general

these works assume the existence of a centralised mechanism.

The idea of difference rewards [43, 44] is also related to our ap-

proach. This mechanism allows agents to perceive their own impact

on the system’s performance, thus obtaining a noiseless feedback

signal to learn from in a multi-agent setting. Using difference re-

wards, the agents’ interest is aligned with the system’s utility so

that they converge to the SO. Notwithstanding, as we are explicitly

considering here the toll-based route choice problem in the con-

text of heterogeneous preferences, then we cannot make a direct

comparison between our method and difference rewards.

7 CONCLUSIONS
In this work, we extended the toll-based route choice problem

with heterogeneous preferences (that agents have about travel and

money) and side payments (so that a fraction δ of collected tolls

can be returned to agents). To deal with this problem, we intro-

duced Generalised Toll-based Q-learning (GTQ-learning), which

combines multiagent reinforcement learning with marginal-cost

tolls to achieve a system-efficient equilibrium with δ -approximated

budget balance. Learning plays a role here because drivers must

learn independently how to adapt to each others’ decisions.

We provided theoretical results showing that GTQ-learning con-

verges to the optimum regardless of agents’ level of selfishness.

Moreover, we have shown that the tax redistribution mechanism,

defined as a side payment, does not affect the system equilibrium.

Our theoretical findings are supported by extensive experimental

results on a range of realistic road networks.

As future work we would like to investigate the avenue cre-

ated by lifting the assumption that agents truthfully report their

preferences. We believe that it is possible to also incorporate a

mechanism for enforcing truthful preference reporting, without

losing the theoretical guarantees regarding the convergence to the

system optimum.
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Table 1: Average performance (and standard deviation) obtained by GTQ-learning (GTQ) and other algorithms for different
networks, preference distributions, and revenue redistribution rates.

N(0.5 ± 0.1) N(0.5 ± 0.5) U(0, 1)
Network GTQ TQ ∆T GTQ TQ ∆T GTQ TQ ∆T

δ
=

0
.0

B1
1.000 (10

−5
) 1.009 (10

−3
) 1.009 (10

−3
) 1.000 (10

−5
) 1.033 (10

−3
) 1.034 (10

−3
) 1.000 (10

−5
) 1.036 (10

−3
) 1.037 (10

−3
)

B2
1.000 (10

−5
) 1.004 (10

−4
) 1.004 (10

−3
) 1.000 (10

−16
) 1.038 (10

−3
) 1.038 (10

−3
) 1.000 (10

−6
) 1.043 (10

−3
) 1.043 (10

−3
)

B3
1.000 (10

−5
) 1.001 (10

−4
) 1.000 (10

−4
) 1.000 (10

−6
) 1.028 (10

−3
) 1.028 (10

−3
) 1.000 (10

−6
) 1.031 (10

−3
) 1.031 (10

−3
)

B4
1.000 (10

−5
) 1.000 (10

−4
) 1.000 (10

−4
) 1.000 (10

−5
) 1.019 (10

−3
) 1.020 (10

−3
) 1.000 (10

−5
) 1.023 (10

−3
) 1.023 (10

−3
)

B5
1.000 (10

−5
) 1.000 (10

−4
) 1.000 (10

−4
) 1.000 (10

−5
) 1.014 (10

−3
) 1.013 (10

−3
) 1.000 (10

−5
) 1.017 (10

−3
) 1.017 (10

−3
)

B6
1.000 (10

−5
) 1.000 (10

−4
) 1.000 (10

−5
) 1.000 (10

−5
) 1.010 (10

−3
) 1.011 (10

−3
) 1.000 (10

−5
) 1.013 (10

−3
) 1.013 (10

−3
)

B7
1.000 (10

−5
) 1.000 (10

−5
) 1.000 (10

−5
) 1.000 (10

−5
) 1.008 (10

−3
) 1.008 (10

−3
) 1.000 (10

−5
) 1.010 (10

−3
) 1.009 (10

−3
)

BB1
1.000 (0.000) 1.010 (10

−3
) 1.010 (10

−3
) 1.000 (0.000) 1.034 (10

−3
) 1.033 (10

−3
) 1.000 (0.000) 1.034 (10

−3
) 1.036 (10

−3
)

BB3
1.000 (10

−4
) 1.002 (10

−4
) 1.002 (10

−4
) 1.000 (10

−4
) 1.025 (10

−3
) 1.025 (10

−3
) 1.000 (10

−6
) 1.028 (10

−3
) 1.027 (10

−3
)

BB5
1.000 (10

−5
) 1.001 (10

−4
) 1.001 (10

−4
) 1.000 (10

−4
) 1.010 (10

−4
) 1.010 (10

−3
) 1.000 (10

−6
) 1.011 (10

−3
) 1.012 (10

−3
)

BB7
1.000 (10

−4
) 1.001 (10

−4
) 1.001 (10

−4
) 1.000 (10

−4
) 1.004 (10

−4
) 1.004 (10

−4
) 1.000 (10

−5
) 1.005 (10

−4
) 1.005 (10

−4
)

OW 1.000 (10
−4
) 1.000 (10

−4
) 1.000 (10

−4
) 1.000 (10

−5
) 1.002 (10

−4
) 1.002 (10

−4
) 1.000 (10

−4
) 1.002 (10

−4
) 1.002 (10

−4
)

AN 1.007 (10
−5
) 1.006 (10

−5
) 1.006 (10

−5
) 1.007 (10

−5
) 1.008 (10

−4
) 1.008 (10

−4
) 1.007 (10

−5
) 1.008 (10

−4
) 1.008 (10

−4
)

EM 1.015 (10
−4
) 1.015 (10

−4
) 1.015 (10

−4
) 1.015 (10

−4
) 1.021 (10

−4
) 1.021 (10

−4
) 1.015 (10

−4
) 1.023 (10

−4
) 1.023 (10

−4
)

SF 1.005 (10
−4
) 1.005 (10

−4
) 1.006 (10

−4
) 1.005 (10

−4
) 1.008 (10

−4
) 1.009 (10

−4
) 1.005 (10

−4
) 1.009 (10

−4
) 1.010 (10

−4
)

Avg. 1.002 (10−4) 1.003 (10
−4
) 1.004 (10

−4
) 1.002 (10−4) 1.017 (10

−3
) 1.018 (10

−3
) 1.002 (10−5) 1.020 (10

−3
) 1.020 (10

−3
)

δ
=

0
.5

B1
1.000 (10

−5
) 1.009 (10

−3
) 1.008 (10

−3
) 1.000 (10

−5
) 1.033 (10

−3
) 1.034 (10

−3
) 1.000 (10

−5
) 1.038 (10

−3
) 1.036 (10

−3
)

B2
1.000 (10

−16
) 1.004 (10

−4
) 1.004 (10

−3
) 1.000 (10

−5
) 1.038 (10

−3
) 1.039 (10

−3
) 1.000 (10

−4
) 1.043 (10

−3
) 1.043 (10

−3
)

B3
1.000 (10

−5
) 1.001 (10

−4
) 1.001 (10

−4
) 1.003 (10

−2
) 1.027 (10

−3
) 1.028 (10

−3
) 1.000 (10

−6
) 1.031 (10

−3
) 1.032 (10

−3
)

B4
1.000 (10

−6
) 1.000 (10

−4
) 1.000 (10

−4
) 1.000 (10

−5
) 1.019 (10

−3
) 1.020 (10

−3
) 1.000 (10

−4
) 1.023 (10

−3
) 1.024 (10

−3
)

B5
1.000 (10

−5
) 1.000 (10

−4
) 1.000 (10

−5
) 1.002 (10

−2
) 1.014 (10

−3
) 1.014 (10

−3
) 1.004 (10

−2
) 1.017 (10

−3
) 1.017 (10

−3
)

B6
1.000 (10

−5
) 1.000 (10

−4
) 1.000 (10

−4
) 1.000 (10

−5
) 1.010 (10

−3
) 1.010 (10

−3
) 1.000 (10

−5
) 1.012 (10

−3
) 1.013 (10

−3
)

B7
1.000 (10

−5
) 1.000 (10

−5
) 1.000 (10

−5
) 1.000 (10

−5
) 1.008 (10

−3
) 1.008 (10

−3
) 1.003 (10

−2
) 1.010 (10

−3
) 1.010 (10

−3
)

BB1
1.000 (0.000) 1.010 (10

−3
) 1.010 (10

−3
) 1.004 (10

−2
) 1.033 (10

−3
) 1.033 (10

−3
) 1.005 (10

−2
) 1.037 (10

−3
) 1.037 (10

−3
)

BB3
1.000 (10

−6
) 1.002 (10

−4
) 1.002 (10

−4
) 1.000 (10

−5
) 1.024 (10

−3
) 1.025 (10

−3
) 1.000 (10

−4
) 1.028 (10

−3
) 1.028 (10

−3
)

BB5
1.000 (10

−5
) 1.001 (10

−4
) 1.001 (10

−4
) 1.000 (10

−4
) 1.010 (10

−3
) 1.010 (10

−3
) 1.000 (10

−4
) 1.011 (10

−3
) 1.012 (10

−3
)

BB7
1.000 (10

−5
) 1.001 (10

−4
) 1.001 (10

−4
) 1.000 (10

−4
) 1.004 (10

−4
) 1.004 (10

−4
) 1.001 (10

−3
) 1.005 (10

−4
) 1.005 (10

−4
)

OW 1.000 (10
−4
) 1.000 (10

−5
) 1.000 (10

−4
) 1.001 (10

−4
) 1.002 (10

−4
) 1.002 (10

−4
) 1.001 (10

−3
) 1.002 (10

−4
) 1.002 (10

−4
)

AN 1.007 (10
−5
) 1.006 (10

−5
) 1.006 (10

−5
) 1.007 (10

−4
) 1.008 (10

−4
) 1.008 (10

−4
) 1.007 (10

−4
) 1.008 (10

−4
) 1.008 (10

−4
)

EM 1.016 (10
−4
) 1.015 (10

−4
) 1.015 (10

−4
) 1.016 (10

−4
) 1.021 (10

−4
) 1.021 (10

−4
) 1.017 (10

−4
) 1.023 (10

−4
) 1.023 (10

−4
)

SF 1.005 (10
−4
) 1.005 (10

−4
) 1.005 (10

−4
) 1.007 (10

−3
) 1.008 (10

−4
) 1.010 (10

−4
) 1.015 (10

−2
) 1.009 (10

−4
) 1.010 (10

−4
)

Avg. 1.002 (10−4) 1.004 (10
−4
) 1.004 (10

−4
) 1.003 (10−3) 1.017 (10

−3
) 1.018 (10

−3
) 1.004 (10−3) 1.020 (10

−3
) 1.020 (10

−3
)
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Figure 2: Evolution of average travel time along episodes, for each of the considered algorithms, in two representative cases.
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