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ABSTRACT
In multi-objective multi-agent systems (MOMAS), agents explicitly

consider the possible tradeoffs between conflicting objective func-

tions. We argue that compromises between competing objectives

in MOMAS should be analysed on the basis of the utility that these

compromises have for the users of a system, where an agent’s util-

ity function maps their payoff vectors to scalar utility values. This

utility-based approach naturally leads to two different optimisation

criteria for agents in a MOMAS: expected scalarised returns (ESR)

and scalarised expected returns (SER). In this paper, we explore

the differences between these two criteria using the framework of

multi-objective normal form games (MONFGs). We demonstrate

that the choice of optimisation criterion (ESR or SER) can radi-

cally alter the set of equilibria in a MONFG when non-linear utility

functions are used.

KEYWORDS
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rium; correlated equilibrium; multi-objective decision making

1 INTRODUCTION
Multi-agent systems (MAS) are ideally suited to model a wide range

of real-world problems where autonomous actors participate in dis-

tributed decision making. Example application domains include

urban and air traffic control [18, 38], autonomous vehicles [28, 30]

and energy systems [20, 24, 34]. Although many such problems fea-

ture multiple conflicting objectives to optimise, most MAS research

focuses on agents maximising their return w.r.t. a single objec-

tive. By contrast, in multi-objective multi-agent systems (MOMAS),

agents explicitly consider the possible trade-offs between conflict-

ing objective functions. Agents in a MOMAS receive vector-valued

payoffs for their actions, where each component of a payoff vector

represents the performance on a different objective. Following the

utility-based approach [26], we assume that each agent has a utility

function which maps vector-valued payoffs to scalar utility values.

Compromises between competing objectives are then considered

on the the basis of the utility that these trade-offs have for the users

of a MOMAS.

The utility-based approach naturally leads to two different op-

timisation criteria for agents in a MOMAS: expected scalarised

returns (ESR) and scalarised expected returns (SER). To date, the
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differences between the SER and ESR approaches have received lit-

tle attention in multi-agent settings, despite having received some

attention in single-agent settings (see e.g. [25, 26]). Consequently,

the implications of choosing either ESR or SER as the optimisa-

tion criterion for a MOMAS are currently not well-understood. In

this work, we use the framework of multi-objective normal form

games (MONFGs) to explore the differences between ESR and SER

in multi-agent settings.

In multi-agent systems, solution concepts such as Nash equilibria

[21, 22] and correlated equilibria [2, 3] specify conditions under

which each agent cannot increase its expected payoff by deviating

unilaterally from an equilibrium strategy. Such solution concepts

are well-studied in single objective settings, to capture stable multi-

agent behaviour. However, in utility-based MOMAS the notion of

an equilibrium must be redefined, as incentives to deviate from

equilibrium strategies are now computed based on the relative

utilities of vector-valued payoffs, rather than the relative values of

scalar payoffs. Furthermore, the choice of optimisation criterion

(ESR or SER) influences how equilibria are computed, as agents’

incentives to deviate from an equilibrium strategy may be measured

in terms of either differences in ESR or differences in SER.

The contributions of this work are:

(1) We provide the first comprehensive analysis of the differ-

ences between the ESR and SER optimisation criteria in

multi-agent settings.

(2) We provide formal definitions of the criteria for Nash equi-

libria and correlated equilibria under ESR and SER.

(3) We prove that the ESR and SER criteria are equivalent in

cases where linear utility functions are used.

(4) We demonstrate that the choice of optimisation criterion

radically alters the set of equilibria in an MONFG.

(5) We propose two versions of correlated equilibria for MON-

FGs – single-signal and multi-signal – corresponding to dif-

ferent use-cases.

(6) We prove that in MONFGs under SER, Nash equilibria need

not exist, whereas correlated equilibria can exist. These ex-

amples are supported by empirical results.

The next section of this paper introduces and discusses normal

form games, relevant solution concepts and optimisation criteria

for multi-objective decision making. Section 3 provides an overview

of prior work on multi-objective games. Section 4 formally defines

Nash and correlated equilibria in MONFGs under ESR and SER and

discusses some important theoretical considerations arising from



these definitions. Section 5 presents empirical results in support of

the conclusions reached in Section 4. Finally, Section 6 concludes

with a summary of our findings, a discussion of important open

questions and promising directions for future work.

2 BACKGROUND
2.1 Normal-form Games and Equilibria
Normal-form (strategic) games (NFG) constitute a fundamental

representation of interactions between players in game theory.

Players are seen as rational decision-makers seeking to maximise

their payoff. When multiple players are interacting, their strategies

are interrelated, each decision depending on the choices of the

others. For this reason, we usually try to determine interesting

groups of outcomes, called solution concepts. Below we offer a

formal definition for NFG and discuss two well-known solution

concepts considered in this work: Nash equilibria and correlated

equilibria.

De�nition 2.1 (Normal-form game). An n-person finite normal-

form game G is a tuple „N ;A; p”, with n � 2, where:

� N = f1; : : : ;ng is a finite set of players.
� A = A1�� � ��An , whereAi is the finite action set of player i
(i.e., the pure strategies of i). An action (pure strategy) pro�le
is a vector a = „a1; : : : ;an ” 2 A.

� p = „p1; : : : ;pn ”, where pi : A ! R is the real-valued payoff

of player i , given an action profile.

Mixed-strategy profile. Let us denote by P„X ” the set of all prob-
ability distributions over X . We can then define the set of mixed

strategies of player i as Πi = P„Ai ”. The set of mixed-strategy
pro�les is then the Cartesian product of all the individual mixed-

strategy sets Π = Π1 � : : : � Πn .

We define π�i = „π1; : : : ; πi�1; πi+1; : : : ; πn ” to be a strategy

profile without player’s i strategy. We can thus write π = „πi ; π�i ”.

A Nash equilibrium (NE) [22] can be defined based on a pure or

mixed-strategy profile, such that each player has selected her best

response to the other players’ strategies. We offer a more formal

definition below.

De�nition 2.2 (Nash Equilibrium). A mixed strategy profile π N E

of a game G is a Nash equilibrium if for each player i 2 f1; :::; N g
and for any alternative strategy πi 2 Πi :

Epi „π
N E
i ; π N E

�i ” � Epi „πi ; π
N E
�i ” (1)

Thus, under a Nash equilibrium, no player i can improve her

payoff by unilaterally changing her strategy. The same definition

applies for pure-strategy profiles. Nash [22] has proven that, al-

lowing the use of mixed-strategies, any finite NFG has at least one

Nash equilibrium.

A correlated equilibrium is a game theoretic solution concept

proposed by Aumann [2] in order to capture correlation options

available to the players when some form of communication can

be established prior to the action selection phase (i.e, the play-

ers receive signals from an external device, according to a known

distribution, allowing them to correlate their strategies). For the

current work, we look at correlation signals taking the form of

action recommendations.

Correlated strategy. A correlated strategy represents a probability

vector σ on A, that assigns probabilities for each possible action

profile, i.e., σ : A ! »0; 1…. The expected payoff of player i , given a

correlated strategy σ is calculated as:

Epi „σ ” =
Õ
a2A

σ „a”pi „a”

Strategy modification. A strategy modification for player i is a
function δi : Ai ! Ai , such that given a recommendation ai , player

i will play action δi „ai ” instead. The expected payoff of player i ,
given a correlated strategy σ and a strategy modification δi is

calculated as:

Epi „δ „σ ”” =
Õ
a2A

σ „a”pi „δi „ai ”;a�i ”

De�nition 2.3 (Correlated equilibrium). A correlated strategy

σCE
of a game G is a correlated equilibrium if for each player

i 2 f1; :::; N g and for any possible strategy modification δi :

Epi „σ
CE ” � Epi „δi „σ

CE ”” (2)

Thus, a correlated equilibrium ensures that no player can gain

additional payoff by deviating from the suggestions, given that the

other players follow them as well. Although this definition strongly

resembles the one of NE, there is one important aspect we empha-

sise here, namely the distinction between a mixed-strategy profile

and a correlated strategy. Mixed-strategy profiles are composed of

independent probability factors, while the action probabilities in

correlated strategies are jointly defined.

Correlated equilibria can be computed via linear programming

in polynomial time [23]. It has been also shown that no-regret algo-

rithms converge to CE [9]. Furthermore, CE has the same existence

guarantees in finite NFG [11] as NE, and any Nash equilibrium is

an instance of a correlated equilibrium [3].

Example. Consider the game of Chicken with the payoffs de-

scribed in Table 1. Each player has two actions: to continue driving

towards the other player (D) or to swerve the car (S).

S D

S 6, 6 2, 7

D 7, 2 0, 0

Table 1: Payoff matrix for the game of Chicken.

There are three well-known Nash equilibria for this game with

expected payoffs „7; 2”, „2; 7” – pure strategy NE – and „4 2
3
; 4 2

3
” –

mixed strategy NE where each player selects S and D with proba-

bilities
2

3
and

1

3
respectively.

S D

S 0.5 0.25

D 0.25 0

Table 2: A possible correlated equilibrium for the game of
Chicken.

A possible correlated equilibrium is represented in Table 2, by as-

signing 0:5 probability for the joint action „S; S”, 0:25 for „D; S” and
finally 0:25 for „S; D”. The expected payoff for this CE is „5 1

4
; 5 1

4
”,

values higher than the ones obtained under any NE. Thus, the no-

tion of correlated equilibrium not only extends Nash equilibrium,
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but it also o�ers the potential for obtaining higher expected pay-
o�s when players are able to receive a correlation signal (e.g., a
recommended action).

2.2 Multi-Objective Normal-Form Games
De�nition 2.4 (Multi-objective normal-form game).An n-person

�nite multi-objective normal-form gameG is a tuple¹N; A ;pº, with
n � 2 andd � 2 objectives, where:

� N = f 1; : : : ;ng is a �nite set of players.
� A = A1� � � � � An , whereAi is the �nite action set of playeri

(i.e., the pure strategies ofi ). An action (pure strategy) pro�le
is a vectora = ¹a1; : : : ;an º 2 A .

� p = ¹p1; : : : ;pnº, wherepi : A ! Rd is the vectorial payo�
of playeri , given an action pro�le.

In this work we adopt a utility-based perspective [26] and as-
sume that each agent has a utility function that maps his vectorial
payo� to a scalar utility value. A more detailed discussion of utility
functions can be found in Section 2.4.

2.3 Multi-Objective Optimisation Criteria
When agents consider multiple con�icting objectives, they should
balance these in such a way that the user utility derived from the
outcome of a decision problem (such as a MONFG) is maximised.
This is known as the utility-based approach [26]. Following this
approach, we assume that there exists a utility function that maps
a vector with a value for each objective to a scalar utility:

pu;i = ui ¹pi º (3)

wherepu;i is the utility that agenti derives from the vectorpi .
When deciding what to optimise in a multi-objective normal form
game, we thus need to apply this function to the vector-valued
outcomes of the decision problem in some way. There are two
choices for how to do this [26, 27]. Computing the expected value
of the payo�s of a joint strategy �rst and then applying the utility
function, leads to thescalarised expected returns (SER)optimisation
criterion, i.e.,

pu;i = u¹E»pi j � ¼º (4)

where� is the joint strategy for all the agents in a MONFG, and
pi is the payo� received by agenti . SER is employed in most of
the multi-objective planning and reinforcement learning literature.
Alternatively, the utility function can be applied before computing
the expectation, leading to theexpected scalarised returns (ESR)
optimisation criterion [25], i.e.,

pu;i = E»u¹pi º j � ¼ (5)

Which of these criteria should be considered best depends on how
the games are used in practice. SER is the correct criterion if a
game is played multiple times, and it is the average payo� over
multiple plays that determines the user's utility. ESR is the correct
formulation if the payo� of a single play is what is important to
the user.

2.4 Utility Functions
From a single-objective game theoretic perspective the notions of
utility and payo� functions are generally used interchangeably.

When transitioning to the multi-objective domain, we usually de-
note by payo� function the vectorial return (containing a real-
valued payo� for each objective) received by a player, given an
action pro�le. The utility (scalarisation) function is then used to
denote the mapping from this vectorial return to a scalar utility
value for a playeri : ui : Rd ! R.

Linear combinations are a widely used canonical example of a
scalarisation function:

ui ¹pi º =
Õ

d 2D

wdpi ;d (6)

whereD is the set of objectives,w is a weight vector1, wd 2 »0;1¼
is the weight for objectived andpi ;d is the payo� for objectived
received by agenti . Non-linear, discontinuous utility functions may
arise in the case where it is important for an agent to achieve a
minimum payo� on one of the objectives; such a utility function
may look like the following:

ui ¹pi º =

(
pi ; td if pi ;d � td
0 otherwise

(7)

wherepi ;d represents the expected payo� for agenti on objective
d, td is the required threshold value ford, andpi ; td is the utility to
agenti of reaching the threshold value ond.

Utility functions may not always be knowna priori and/or may
not be easy to de�ne depending on the setting. For example, in
the decision support scenario[26] it may not be possible for users
to specify utility functions directly; instead users may be asked to
provide their preferences by scoring or ranking di�erent possible
outcomes. After the preference elicitation process is complete, users'
responses may then be used to model their utility functions [42].

3 RELATED WORK
Since their introduction in Blackwell et al. [5], multi-objective (mul-
ticriteria) games have been discussed extensively in the literature.
Below we present a non-exhaustive overview of this work, high-
lighting a few di�erences with the current considered perspective.

Most previous work in multi-objective games considers utility-
function agnostic equilibria, i.e., the agents do not know their prefer-
ences. For this case, Shapley and Rigby[29] extend and characterise
the set of mixed-strategy agnostic Nash equilibria for multicriteria
two-person zero-sum games for linear utility functions: joint strate-
gies that are undominated w.r.t. unilateral changes by either agent.
They also note that if the preference functions di�er, the scalarised
game (implicitly assuming ESR) can possibly be no longer zero-sum.
While the idea that utility functions could also be non-linear is dis-
cussed by Bergstresser and Yu[4], for analysis purposes they only
consider linear utility functions and derive solution points from
the resulting trade-o� games. This is important because, as we will
discuss in Section 4.2, there is no in-practice di�erence between
ESR and SER in the linear case. The existence of Pareto2 equilibria
for two-person multi-objective games under linear utility functions

1A vector whose coordinates are all non-negative and sum up to 1.
2While the original paper refers to this type of equilibrium as �Pareto�, we note that
Pareto is a too loose domination concept when considering only linear utility functions,
and would prefer �Convex� in this case. For consistency however, we keep the original
term.
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is proven by Borm et al. [6]. A further characterisation of Pareto
equilibria can be found in [33].

Considering non-cooperative games, Wierzbicki[36] states that,
in realistic scenarios, how to aggregate criteria might not be known,
however some form of scalarisation function is necessary in order
to compute possible solutions. This corresponds to explicitly taking
the user utility into account, and we therefore fully agree with this
approach. Con�ict escalation and solution selection are discussed
when considering linear or order-consistent scalarisation functions.
Lozovanu et al. [15] formulate an algorithm for �nding Pareto-Nash
equilibria in multi-objective non-cooperative games (i.e. for every
linear utility function for which the weights sum to one, compute
the trade-o� game, then �nd its NE). Finally, Lozan and Ungureanu
[14] propose a method for computing Pareto-Nash equilibrium
sets, also under linear utility functions. A third approach is to
elicit preferences, i.e., information about the utility function, while
determining equilibria [12]. As far as we know however, this also
has only been done for linear utility functions.

Notice that, despite the fact that many works admit that it might
not always be desirable for a player to share full information about
her utility function or that utility functions could take any form
(including non-linear), most analysis and theoretical contributions
use linear utility functions only. Furthermore, the utility function
is directly applied on the original game in order to derive and
analyse the corresponding trade-o� game, which corresponds to
the expected scalarised return (ESR) case. However, due to the
use of linear utility functions, there is no distinction to be made
between the ESR and SER optimisation criteria, as we will show
in Section 4.2. Interestingly enough, the �eld of multi-objective
(single-agent) reinforcement learning typically focuses on the SER
case [31, 32, 41], while in either �eld this vital choice is typically not
made explicitly or explained in the individual papers. In this paper,
we aim to make the choice between an ESR and SER perspective
explicit, and show that this choice has profound consequences in
multi-objective multi-agent systems.

4 COMPUTING EQUILIBRIA IN MONFGS
Now that we have covered the necessary background, we begin
our exploration of the di�erences between the ESR and SER optimi-
sation criteria in MOMAS. In Section 4.1 we formally de�ne Nash
and correlated equilibria in MONFGs under either ESR or SER. In
Section 4.2 we discuss several important theoretical considerations
arising from these de�nitions.

4.1 De�nitions
As agents in MOMAS seek to optimise the utility of their vector-
valued payo�s, rather than the value of scalar payo�s in single-
objective settings, the standard solution concepts must be rede�ned
based on the agents' utilities. Incentives to deviate from an equi-
librium strategy may be de�ned based on utility, speci�cally the
di�erence between the utility of an equilibrium action and the util-
ities of other possible actions. Here, we reformulate the conditions
for Nash equilibria (Eqn. 1) and correlated equilibria (Eqn. 2) under
the ESR optimisation criterion (Eqn. 5) and the SER optimisation
criterion (Eqn. 4).

De�nition 4.1 (Nash equilibrium in a MONFG under ESR).A
mixed-strategy strategy pro�le� N E is a Nash equilibrium in a
MONFG under ESR if for alli 2 f 1; :::;Ngand all� i 2 � i :

Eui
�
pi ¹� N E

i ; � N E
� i º

�
� Eui

�
pi ¹� i ; � N E

� i º
�

(8)

i.e.� N E is a Nash equilibrium under ESR if no agent can increase
the expected utility of her payo�sby deviating unilaterally from
� N E.

De�nition 4.2 (Nash equilibrium in a MONFG under SER).A
mixed-strategy strategy pro�le� N E is a Nash equilibrium in a
MONFG under SER if for alli 2 f 1; :::;Ngand all� i 2 � i :

ui
�
Epi ¹� N E

i ; � N E
� i º

�
� ui

�
Epi ¹� i ; � N E

� i º
�

(9)

i.e.� N E is a Nash equilibrium under SER if no agent can increase
the utility of her expected payo�sby deviating unilaterally from
� N E.

De�nition 4.3 (Correlated equilibrium in a MONFG under ESR).
A probability vector� CE on A is a correlated equilibrium in a
MONFG under ESR if for all playersi 2 f 1; :::;Ngand for all strat-
egy modi�cations� i :

Eui
�
pi ¹� CEº

�
� Eui

�
pi ¹� i ¹� CEºº

�
(10)

i.e. � CE is a correlated equilibrium under ESR if no agent can
increase theexpected utility of her payo�sby deviating unilaterally
from the action recommendations in� CE.

When applying the SER optimisation criterion for correlated
equilibrium, there are two cases we can distinguish between, due
to the two expectations that CE incorporates for every playeri .
First, we can de�ne the expected payo� given a signalar

i due to the
uncertainty about the other players' actions. Second, we can de�ne
the expected payo� given the correlated strategy (i.e., a certain
probability distribution over the joint action space). Depending
on where we place the utility function for taking the scalarised
expectation, we distinguish between thesingle-signalandmulti-
signalcases.

Single-signal CE under SER.In the case of a single-signal corre-
lated equilibrium, we assume that the signal is only given once, and
that the expected payo�s over which the utility must be computed
is conditioned on the signal. Even if the MONFG is played multiple
times, the signal does not change. An example of a single persistent
signal in a multi-agent decision problem can be a smart-grid in
which the correlation signal corresponds to the price of electricity
in a longer interval (e.g., one or more hours), and the actions of
the agents are whether to perform a given task or not within a
small interval (e.g., 10 min). In such cases, the utility of the other
signals that might have been possible do not matter; they did not
occur. Hence, the agent must maximise the utility of its expected
vector-valued payo� given a single signal. Or, if the signal is not
known at plan-time, for each signal separately.

De�nition 4.4 (Single-signal CE in a MONFG under SER).A prob-
ability vector� CE on A is a single-signal correlated equilibrium
in a MONFG under SER if for all playersi 2 f1; :::;Ng, given a
recommended actionar

i , and for any alternative actionai :
4



ui

� Í
a� i 2A � i � CE¹a� i ;ar

i ºpi ¹a� i ;ar
i º

Í
a� i 2A � i � CE¹a� i ;ar

i º

�

� ui

� Í
a� i 2A � i � CE¹a� i ;ar

i ºpi ¹a� i ;ai º
Í

a� i 2A � i � CE¹a� i ;ar
i º

�
(11)

i.e.� CE is a single-signal correlated equilibrium under SER if no
agent can increase theutility of her expected payo�sby deviating
unilaterally from the given action recommendation in� CE.

Multi-signal CE under SER.The single-signal CE for MONFGs
assumes that even if the MONFG is played multiple times, there
will be one possible signal. Alternatively, the signal may change
every time the game is played. I.e., the scalarisation is performed
after marginalising over the entire correlated strategy probability
distribution.

De�nition 4.5 (Multi-signal CE in a MONFG under SER).A prob-
ability vector � CE on A is a multi-signal correlated equilibrium
in a MONFG under SER if for all playersi 2 f 1; :::;Ngand for any
strategy modi�cation� i :

ui
�
Epi ¹� CEº

�
� ui

�
Epi ¹� i ¹� CEºº

�
(12)

i.e.� CE is a multi-signal correlated equilibrium under SER if no
agent can increase theutility of her expected payo�sby deviating
unilaterally from the given action recommendations in� CE.

Notice that while the ESR case is equivalent to solving the CE
for the corresponding single-objective trade-o� game, the SER case
leads to a much more complicated situation. In a general case, when
no restriction is imposed on the form of the utility function, we
may end up having to solve a non-linear optimisation problem.

4.2 Theoretical Considerations
Theorem 4.6.Every �nite MONFG where each agent seeks to

maximise the expected utility of its payo� vectors (ESR) has at least
one Nash equilibrium.

Proof. In the ESR case, any MONFG can be reduced to its corre-
sponding single-objective trade-o� gameG0, as players will apply
the utility function on their payo� vectors after every interaction.
We proceed with showing how one can constructG0.

Consider the following �nite normal-form gameG0 = ¹N; A ; f º,
whereN andA are the same as in the original MONFG. According
to De�nition 2.1, the payo� function for G0: f = ¹f1; : : : ; fn º.

We de�ne each componentf i : A ! R as the composition
between player'si utility function ui : Rd ! R and her vectorial
payo� function pi : A ! Rd :

f i ¹aº = ¹ui � pi º¹aº = ui ¹pi ¹aºº; 8a 2 A

Thus, in the ESR case, any MONFG is reduced to a corresponding
single-objective trade-o� �nite NFG that can be constructed as
shown above. According to the Nash equilibrium existence theorem
[22], the resulting �nite NFGG0has at least one Nash equilibrium.

�

Theorem 4.7. In �nite MONFGs, when linear utility functions are
used, the ESR and SER optimisation criteria are equivalent.

Proof. Let � N E be the NE strategy pro�le under the ESR opti-
misation criteria, according to De�nition 4.1 and for each playeri
let ui be a linear scalarisation function, according to Equation 6.

Due to the fact thatui is a linear function, Jensen's inequality
[13] allows us to rewrite each term of Equation 8 as follows:

Eui
�
pi ¹� N E

i [ � N E
� i º

�
= ui

�
Epi ¹� N E

i [ � N E
� i º

�
(13)

Eui
�
pi ¹� i [ � N E

� i º
�

= ui
�
Epi ¹� i [ � N E

� i º
�

(14)

Notice that by replacing the terms from Equation 8 according to
Equations 13 and 14 we obtain the de�nition of the NE under SER
(Equation 9). The same procedure can be applied for CE, to transi-
tion from Equation 10 to 12 and prove that, under a linear utility
function, the ESR and SER criteria are also equivalent for CE.�

When considering a more general case, withui being a non-
linear function, despite the fact that Jensen's inequality [13] would
allow us to de�ne inequality relations between the terms in Equa-
tions 13 and 14 (when constrainingui to be convex or concave),
we have no guarantee that the set of NE and CE remains the same
under the two optimisation criteria ESR and SER. Thus, no clear
conclusions can be drawn when generalising the form of the utility
function. Furthermore, as we show below using a concrete example,
in the general case, the ESR and SER criteria are not equivalent.

Theorem 4.8. In �nite MONFGs, where each agent seeks to max-
imise the utility of its expected payo� vectors (SER), Nash equilibria
need not exist.

Proof. Consider the following game. There are two agents that
can each choose from three actions:left, middle, or right. The payo�
vectors are identical for both agents, and are speci�ed by the payo�
matrix in Table 3.

The utility functions of the agents are given byu1¹»p1;p2¼º=
p1 � p1 + p2 � p2 for agent 1, andu2¹»p1;p2¼º= p1 � p2 for agent
2.3 In this game, it is easy to see that agent 1 will always want

L M R
L ¹4;0º ¹3;1º ¹2;2º
M ¹3;1º ¹2;2º ¹1;3º
R ¹2;2º ¹1;3º ¹0;4º

Table 3: The (Im)balancing act game.

to move towards an as imbalanced payo� vector as possible, i.e.,
concentrate as much of the value in one objective, while agent 2
will always want to move to a balanced solution, i.e, spread out
the value across the objectives equally. Under SER, the expectation
is taken before the utility function is applied. Therefore, a mixed
strategy will lead to an expected payo� vector for both agents. If the
expected payo� vector is balanced, i.e.,»2;2¼, agent 1 will have an
incentive to deterministically take actionL or R, irrespective of its
current strategy. If the payo� vector is imbalanced, e.g.,»2� x; 2+x¼,
agent 2 will have an incentive to compensate for this imbalance,
and playleft more often to compensate ifx is positive, andright
more often ifx is negative, and he is always able to do so. Hence,
at least one of the agents will always have an incentive to deviate
3Please note that this is a monotonically increasing payo� function for positive-only
payo�s. In the case of negative payo�s we can set the utility to0 as soon as the payo�
value for one of the objectives becomes negative.
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from its strategy, and therefore there is no Nash equilibrium under
SER. �

L M R
L ¹16;0º ¹10;3º ¹8;4º
M ¹10;3º ¹8;4º ¹10;3º
R ¹8;4º ¹10;3º ¹16;0º

Table 4: The (Im)balancing act game under ESR with utility
functions u1¹pº = p1

2 + p2
2 and u2¹pº = p1 � p2 applied.

We also note that under ESR there is a mixed Nash equilibrium for
the game in Table 3, i.e., agent 2 playsmiddledeterministically, and
agent 1 playsleft with a probability 0:5 andright with a probability
0:5, leading to an expected utility of32 + 12 = 10for agent 1, and
3 � 1 = 3 for agent 2. This is not a Nash equilibrium under SER, as
the expected payo� vector is»2;2¼for this strategy, and agent 1
has an incentive to play eitherleft or right deterministically, which
would lead to an expected payo� vector of»3;1¼or »1;3¼, yielding
a higher utility for agent 1 if agent 2 does not adjust its strategy.
Hence, the SER and ESR case are fundamentally di�erent.

Theorem 4.9. In �nite MONFGs, where each agent seeks to max-
imise the utility of its expected payo� vectors given a signal (single-
signal CE under SER), correlated equilibria can exist when Nash equi-
libria do not.

Proof. Consider the action suggestions in Table 5 for the
(Im)balancing act game.

L M R
L 0 0:75 0
M 0 0 0
R 0 0:25 0

Table 5: A correlated equilibrium in the (Im)balancing act
game under SER.

It may easily be shown that the action suggestions in Table 5
satisfy the conditions given in Eqn. 11 for a single-signal CE in a
MONFG under SER:

� When L is suggested to the row player, the expected payo�
vectors and SER for it to play L, M or R are:
� L: E¹pº = ¹0:75� »3;1¼º•0:75= »3;1¼, SER= 32 + 12 = 10
� M: E¹pº = ¹0:75� »2;2¼º•0:75= »2;2¼, SER= 22 + 22 = 8
� R:E¹pº = ¹0:75� »1;3¼º•0:75= »1;3¼, SER= 12 + 32 = 10

� When R is suggested to the row player, the expected payo�
vectors and SER for it to play L, M or R are:
� L: E¹pº = ¹0:25� »3;1¼º•0:25= »3;1¼, SER= 32 + 12 = 10
� M: E¹pº = ¹0:25� »2;2¼º•0:25= »2;2¼, SER= 22 + 22 = 8
� R:E¹pº = ¹0:25� »1;3¼º•0:25= »1;3¼, SER= 12 + 32 = 10

� When M is suggested to the column player, the expected
payo� vectors and SER for it to play L, M or R are:
� L:E¹pº = ¹0:75�»4; 0¼+0:25�»2; 2¼º•¹0:75+0:25º = »3:5; 0:5¼,

SER= 3:5 � 0:5 = 1:75
� M: E¹pº = ¹0:75 � »3;1¼+ 0:25 � »1;3¼º•¹0:75+ 0:25º =

»2:5;1:5¼, SER= 2:5 � 1:5 = 3:75
� R:E¹pº = ¹0:75�»2; 2¼+0:25�»0; 4¼º•¹0:75+0:25º = »1:5; 2:5¼,

SER= 1:5 � 2:5 = 3:75

In all the cases above, neither of the agents may increase the
utility of their expected payo� vectors given the recommendations,
by deviating from the suggested actions in Table 5, assuming that
the other agent follows the suggestions. Therefore CE may exist in
MONFGs under SER when conditioning the expectation on a given
signal, even in cases where Nash equlilibria do not exist. �

Theorem 4.10.In �nite MONFGs, where each agent seeks to max-
imise the utility of its expected payo� vectors over all the given signals
(multi-signal CE under SER), correlated equilibria need not exist.

Proof. In the case of a multi-signal CE, the agents are interested
in their expected payo� vectors across all possible signals. In other
words, to compute the expected payo� vectors, the signal must be
marginalised out �rst. Therefore, the CE previously discussed for
the single-signal case (Table 5) is not a CE for the multi-signal case,
i.e., Player 1 will have an incentive to deterministically take action
L or R, irrespective of the given signal. If the correlated strategy
tries to incorporate this tendency, player 2 will have an incentive
to deviate towards the options that o�er her the most balanced
outcome. Hence, similar to the proof for the non-existence of Nash-
equilibria under SER, at least one of the agents will always have an
incentive to deviate from the given recommendation, and therefore
there is no multi-signal correlated equilibrium under SER. �

We thus conclude that an MONFG under ESR withknownutility
functions is equivalent to a single-objective NFG, and therefore all
theory, including the existence of Nash equilibria and correlated
equilibria, is implied. Under SER however, Nash equilibria and
multi-signal correlated equilibria need not exist, and MONFGs are
fundamentally more di�cult than single-objective NFGs, even when
the utility functions are known in advance.

5 EXPERIMENTS
To demonstrate the e�ect of the SER optimisation criterion on equi-
libria in MONFGs, in the case ofsingle-signal correlated equilibrium,
we conducted two experiments using the (Im)balancing act game
in Table 3. Both experiments were repeated 100 times and had a
duration of 10,000 episodes, where the (Im)balancing act game was
played once per episode. Agents implemented a simple algorithm4

to learn estimates of the expected vectors for each action according
to the following update rule (i.e. a �one-shot� vectorial version of
Q-learning [35]):

Q¹si ;ai º  Q¹si ;ai º + � »pi ¹si ;ai º � Q¹si ;ai º¼ (15)

whereQ¹si ;ai º is an estimate of the expected value vector for se-
lecting actionai when a private signalsi is received,pi ¹si ;ai º is
the payo� vector received by agenti for selecting actionai when
observingsi , and� is the learning rate.

The private signals given to each agent allow us to test em-
pirically whether agents will have an incentive to deviate from a
single-signal correlate equilibrium in a MONFG under SER. In the
�rst experiment, in each episode agents received unchanging pri-
vate signals with probability 1 (i.e. equivalent to the case where no

4We note that specialised algorithms exist to learn mixed-strategy Nash equilibria (e.g.
[10]) or correlated equilibria (e.g. [1]) in single-objective MAS. We leave the design
and empirical evaluation of versions of these algorithms for learning or approximating
equilibria in MOMAS under SER for future work.
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