
Customizing Scripted Bots: Sample Efficient Imitation
Learning for Human-like Behavior in Minecraft

Brian Broll
Microsoft Research

brian.broll@microsoft.com

Matthew Hausknecht
Microsoft Research

matthew.hausknecht@microsoft.com

Dave Bignell
Microsoft Research

david.bignell@microsoft.com

Adith Swaminathan
Microsoft Research

adswamin@microsoft.com

ABSTRACT
Although there have been many advances in machine learning and
artificial intelligence, video games still define the behavior of charac-
ters through careful scripting. These scripted agents follow a fixed set
of rules or behavior trees resulting in behavior which is predictable
and discernibly different from human gameplay. We demonstrate
how to combine imitation learning with scripted agents in order to
efficiently train hierarchical policies. Integrating both programmed
and learned components, these hierarchical polices improve upon the
expressiveness of the original scripted agent, allowing more diverse
and human-like behavior to emerge. Additionally, we demonstrate
that learned policies also maintain behavior guarantees afforded by
the scripted agent, allowing a developer to be confident in the be-
havior of the learned policy. We demonstrate this interplay between
classical AI techniques and statistical machine learning through a
case study in Minecraft, and explore open questions about the neces-
sary and sufficient conditions to achieve a fruitful interplay between
these two approaches.

KEYWORDS
Sequential decision making; Neural networks; Intelligent agents

1 INTRODUCTION
Despite the recent super-human performance of game playing agents
such as AlphaZero [13], OpenAI Five [10], and CFR+ [2], artificial
intelligence design in commercial video games today still relies on
carefully designed rule-based agents. Integrating machine learned
behaviors with existing rule-based agents has the potential to yield
learned behaviors that are more flexible, robust, and human-like
than their rule-based counterparts. However, there are many open
questions about how to incorporate components from existing rule-
based agents and how to define appropriate learning problems that
encourage human-like behavior. This paper proposes a methodology
for integrating scripted agents with learned behaviors to create robust,
human-like agents.

Traditional scripted agents follow a fixed set of rules or behav-
ior trees resulting in behavior which is predictable and discernibly
different from human players. For example in Minecraft [7], the
gladiator arena scenario depicted in Figure 1 pits the player against
waves of enemies in an enclosed map. A scripted agent developed
specifically for this scenario uses hand-coded path-finding, potential
function-based movement, and a fixed priority list to decide its next
action. While it is successful at defeating enemies and collecting

Item Spawn 
Location

Item Spawn 
Location

Player

Figure 1: Minecraft Gladiator Arena: The player starts in the
center of the room (shown in light blue) and must survive
rounds of enemies. Enemies are spawned throughout the map
while items are spawned in only two locations (shown in yellow).

items, its style and approach to the game is markedly different from
human players. Humans employ a diverse set of strategies, intel-
ligently avoid enemies, and use items in contextually appropriate
ways (e.g. equipping a sword before targeting stronger enemies).
Our goal is to enhance the scripted agent to elicit more diverse and
human-like behavior.

Imitation learning (IL) is a natural solution to elicit human-like
behavior. In theory, given access to a sufficiently large set of human
trajectories, IL is capable of faithfully replicating human behavior.
However, naive imitation learning at the level of player input/output
(e.g. pixels and mouse/keyboard presses) not only requires a large
volume of human data, but also fails to leverage the significant time
investment spent by AI developers on the scripted agent. Further-
more, in many contexts, we need guaranteed behavior that is easy
to enforce through rule-based scripts (e.g. inventory management in
the Minecraft arena), but difficult to guarantee in an IL policy.

Our key insight is to distinguish between a player’s high-level
strategy and low-level execution. To successfully imitate a player’s
high-level strategy, we don’t need to faithfully re-create each of their
low-level actions. Instead we develop a hierarchical IL algorithm
that (1) employs labeling functions to extract a player’s high-level
strategy; and (2) learns a controller to imitate the player’s strategy



using subroutines recycled from the scripted agent. The comple-
mentary strengths of IL for high-level strategy and scripting for
low-level execution combined in this way yield sample-efficient
and human-like behavior. In a case study in Minecraft, this hy-
brid algorithm exhibits significantly more diverse strategies and
human-like behavior than the baseline scripted agent using just
33 trajectories collected from non-expert players. The Minecraft
Arena scenario, the scripted bot, anonymized human gameplay data
and code to reproduce our hybrid bot, as well as videos show-
ing its diverse human-like behavior are available online at https:
//sites.google.com/view/customizing-scripted-agents.

2 RELATED WORK
Scripted behaviors have a long and rich history of use in video
game AI [11]; the most common approaches use hierarchical state
machines and behavior trees. However, making these approaches
more robust to emergent player behavior or elicit more human-like
behavior can often take many thousands of man-hours [3]. This
has spurred research in using machine learning techniques to speed
up or replace traditional game AI (see [4] for a survey). Most of
these techniques have focused on replacing the scripted behavior
entirely. Instead of replacing the scripted agent, we recognize that
there are many situations where scripted behaviors can be desirable
and focus on fruitfully combining learned and scripted components.
The closest in spirit to our work is dynamic scripting, an approach
which combines ML and rules in an adaptive way as the player plays
a game [14]. In dynamic scripting, a rule-based policy is created
by the weighted sampling of rules from a rulebase. Weights for the
rules are given by a value function trained from the reward signal
observed from interactions in the game. Our approach however is a
“top-down” approach that utilizes hierarchical IL to control scripted
behavior – this design choice is more suitable than dynamic scripting
whenever a scripted agent already exists.

Our approach builds on the rich literature on hierarchical IL [8]
to achieve sample efficient learning. However, our “lower-level”
policies arise as a consequence of the scripted behavior that may
not match human behavior; this introduces novel challenges for
hierarchical imitation learning that does not arise when lower-level
policies are learned jointly, via e.g. reinforcement learning.

To address the mismatch between the low-level actions such as
mouse movements present in player trajectories and the high-level
behavior exposed by subroutines in the scripted agent, we borrow
ideas from behavior cloning from observations and imitation learn-
ing from only states [9, 15, 16]. The core idea in these approaches is
to learn a model that maps from observed state transitions to impute
agent’s actions that can cause the transition. We instead employ
labeling functions to impute high-level strategic targets from player
trajectories. A target is an entity in the world with which the player
is trying to interact, such as an enemy to attack or an item to pick
up. Player trajectories however do not, by default, have annotations
that tell us the player’s intended target; so we must infer the targets
through other means. Labeling functions [12] are a data program-
ming technique where domain heuristics are expressed in a program
used to label data. They have been used successfully to bootstrap
large training sets via weak supervision for classification tasks like
knowledge base slot-filling; to our knowledge, our work is the first

extension of their application to sequential decision-making tasks.
In doing so, we employ a novel policy architecture to learn from
the weak supervision provided by these functions – our policies use
an LSTM to summarize long sequences of states like in DRQN [5]
and employ shared weights and dynamic computation graphs as in
DRRN [6].

3 A CASE STUDY IN MINECRAFT
We conducted experiments within the Minecraft Gladiator Arena
using Malmo [7]. The Gladiator Arena is a survival game in which
the player is spawned in a large room and must survive multiple
rounds of combat, where various enemies and items are spawned
throughout the map in each round. The items include weapons like
swords and bows, armor, and health that assist the player in defeating
enemies. Enemies have different types of attack such as melee (Zom-
bie), ranged (Skeleton, Blaze), and self-destructive attacks (Creeper).
Generally, the number and difficulty of the enemies increase as the
levels progress.

In this specific scenario, we collected 33 human demonstrations
from players of different skill levels. Across these trajectories we
observed a variety of strategies employed by the players (both suc-
cessful and unsuccessful). Strategies include user preference for
ranged versus melee weapons and different combat styles. Another
interesting dimension of playstyle among the collected human tra-
jectories is the various strategies for collecting items or attacking
enemies: some players preferred to directly attack enemies, while
others would hide and collect items in order to fight more effectively.

z e1

B

Entity Detector

 Agent

Attack

Action Interface

Observation Interface

Inventory

Select Target

MoveInDirectionTurn

Figure 2: A scripted agent for playing the Arena challenge. The
agent consists of five subroutines: attacking, selecting the cur-
rent target, managing the inventory, turning, and movement.
Shaded in dark grey, the Select Target subroutine is replaced
with a learned controller.

Scripted Agent: In contrast to human players, the scripted agent
depicted in Figure 2 uses hand-coded subroutines to perform low-
level pathfinding, inventory management, combat, and target selec-
tion. Specifically, the scripted agent always attacks if an enemy is
within melee range. Next, it always interacts with its inventory to
equip the strongest available armor and weapon, to use any items
which restore health if needed, and to discard any undesirable items.
Finally the SelectTarget subroutine (Figure 2) selects the next
target to move toward in the level such as a weapon or enemy. The

2

https://sites.google.com/view/customizing-scripted-agents
https://sites.google.com/view/customizing-scripted-agents


default SelectTarget subroutine uses a static ranking over all
possible entities to choose the next target.

Movement: The movement of the scripted agent is determined
using potential functions [1] which repel the agent from enemies
and static obstacles and attract the agent to its desired target. If there
are no targets present, the agent is attracted to “home squares” at the
top and bottom of the arena. Finally, regardless of target, if there is
an enemy that is getting close to being within attack range, the bot
faces toward the enemy.

3.1 Defining a Learned Controller
Within the context of the Arena, the scripted agent, and the behaviors
observed in the human trajectories, we create a learned controller
to replace the SelectTarget subroutine in the original scripted
agent (shown in Figure 2). Of the various subroutines present in the
scripted agent, we chose to replace SelectTarget because high-
level target selection maps well onto the space of human strategies
and can naturally be used to describe the strategies employed by
different human players. In particular, much of the diversity in human
behavior can be explained by describing which entities they decide
to interact with and the order in which they collected items and
attacked enemies.

3.2 Deriving Supervision from Player Trajectories
To construct the training data from player trajectories, we must
impute targets for the SelectTarget controller. There are many
conceptually valid ways of doing this:

Trajectory Matching: The first and simplest approach relies on
some way to measure similarity between two gameplay trajectories.
At any game state in a player trajectory, we can impute every possible
target and collect how the scripted agent continues from that state.
Then, the behavior that is closest to the human continuation is chosen
according to the similarity metric and the corresponding target is
imputed. In situations where humans and agents use different action
APIs to interact with the game, the similarity can be computed
using just the game observations collected in the trajectories. This
approach is a non-starter because it is computationally infeasible
and relies heavily on a robust similarity metric – coding or learning
the similarity metric can be harder than training the controller!

Inverse Modeling: The second approach relies on learning an
inverse model [16]. Suppose we randomly perturb the targets se-
lected by the agent and collect the resulting bot behaviors. On this
dataset, the targets are known and a model can be trained to predict
the targets given observations as context. However, there is no corre-
spondence with human trajectories during training – so it is unlikely
that the trained model generalizes to impute good targets on human
trajectories. This approach is also computationally expensive – hav-
ing to randomize over all possible target manipulations to construct
a bot dataset is very expensive when what we want are the targets
that roughly correspond to human gameplay.

Labeling Functions: Our approach is computationally cheap,
naturally achieves correspondence with human trajectories, and
doesn’t require a hard-to-learn similarity metric. We use labeling
functions [12] to impute targets for the SelectTarget controller.
At any game state in a player trajectory, the labeling function takes
the human continuation from that state as input. The length of the

future states is a hyper-parameter δ : this hyper-parameter is set to
approximate the maximum frequency of target changes in a player
trajectory. The output of the labeling function serves as the target
that the learned controller must predict. Consequently, if δ is small
then we require a more fine-grained alignment between the game
observations a bot might see if it continued from a state and what
the player experiences from that state.

Concretely, the labeling function observes the player’s position
across δ time-steps and infers the target to be the entity that the
player moved furthest toward. The player’s displacement from si
to si+δ is computed and projected onto the displacement between
the player and each possible entity. The entity to which the player
moved most toward is then considered the target. Because human
players aren’t always moving towards a target (in fact sometimes
they aren’t moving at all), we introduced an additional target “self,”
which indicates that the player is stationary during the δ time-steps.
Throughout the paper, δ was set to 10 frames (0.5 seconds). Thus,
our labeling function provides a weak supervisory signal that ap-
proximates the target that a player may be going after at the given
state, by peeking 0.5 seconds into the future.

3.3 Training the Controller
After labeling the human trajectories, the controller is then trained
using behavior cloning to imitate the targets imputed by the labeling
function. In order to capture sufficient context to represent human
behavior, the learned controller is a recurrent neural network which
selects the current target from the list of valid entities at the given
state. The neural network architecture accepts two variable length
inputs, the observation sequence O and the valid entities e0 . . . en
extracted from the final observation (shown in Figure 3). The encoder
LSTM A, generates a fixed size embedding of the given trajectory of
observations. This embedding, z, is then concatenated with each valid
entity and provided as input to the target evaluator, B. Finally, the
logits computed for the entities are converted to a valid probability
distribution via the softmax layer.

This dynamic architecture was necessary since the number of and
type of targets can change from step to step.

Figure 3: Policy network architecture

3.3.1 State and Entity Representation. The states were rep-
resented by the internal game state encoded to include the number
of entities killed, damage taken, damage dealt, life, score, and player
orientation. The states also included counts of the numbers of items

3



and entities in different regions of the map. Entities were encoded
using orientation, health, and a one-hot encoding for the entity type.

3.3.2 Training. Mini-batches were stratified by the total num-
ber of valid entities in the last state of the sequence to ensure that
the valid entity count was fixed for each mini-batch. The datasets
were resampled to address class imbalance (4̃5% of the samples were
labeled “self”). The policy was trained for 50,000 iterations (8̃5
epochs) using a batch size of 128 and a sequence length of 25. The
learning rate was 0.00001 for the ADAM optimizer. The training,
validation, and testing datasets were created using a 70/20/10 split of
the human trajectories and were sampled to preserve the distribution
of classes. Code to replicate training of our controller is available
online at https://sites.google.com/view/customizing-scripted-agents.

3.4 Summary of the Approach
For reference, the approach used in vanilla imitation learning is
shown in Figure 4. In vanilla imitation learning, the objective is to
learn the direct policy (shown in dark blue) which maps the states to
the agent actions given the human demonstrations. In the proposed
approach, a learned controller is introduced into an existing scripted
agent to allow us to leverage both the flexibility of imitation learning
and the behavioral guarantees afforded by the remaining scripted
logic. A labeling function is defined to derive a weak supervisory
signal from the human demonstrations. The targets imputed by the
labeling function are used to train the SelectTarget controller
via behavior cloning. As the target space is much smaller than the
original agent action space, the sample complexity of the imitation
learning problem is reduced and becomes tractable while needing
fewer human demonstrations. After we have trained the controller,
we then use the hybrid agent to emit actions when being driven by
the targets selected by the controller.

Figure 4: An overview of the approach to perform sample ef-
ficient imitation learning leveraging an existing scripted agent.
The standard approach to imitation learning is also shown for
reference.

4 EMPIRICAL EVALUATION
We conduct extensive experiments to test the performance of the
hybrid agent using a learned controller and scripted subroutines
across several dimensions.

(1) Does the learned controller generalize to select good targets
on a held out set of human trajectories? [Section 4.1]

(2) Does the hybrid agent exhibit more diverse and human-like
behavior? Section 4.2 compares the distribution of different
strategies used during the first round of the Arena scenario.
Section 4.4 compares the aggregate environment occupancy
of the player across trajectories generated from both bots and
the human.

(3) Can we get guaranteed behavior from the hybrid agent just
like we can from the scripted agent? [Section 4.3]

(4) How does the mismatch between humans’ low-level behavior
and the scripted subroutines affect the bot’s overall perfor-
mance in the Arena scenario? [Section 4.5]

4.1 Does the Controller Generalize Across Human
Trajectories?

Evaluation is performed by executing the policy network both on
fixed length sequences as well as using all previous observations.
When using all previous observations, we expect the controller to
struggle since it must remember the salient information from state
sequences in its LSTM units. As a baseline, we present the per-
formance of both random guessing and the scripted agent’s target
selection logic for selecting the current human target as imputed
by the labeling function on the test set. Random guessing results in
an accuracy of 5.15% whereas the original scripted target selection
logic has an accuracy of 13.65%. The learned script-controller has an
overall accuracy of 73% when evaluated on fixed length (N = 25) se-
quences and 60% when evaluated using all prior observations. These
accuracies mean the controller more closely matches the human
target selection than the original scripted agent.

This suggests that the learned controller is indeed able to identify
the target a player is likely to go after given the recent gameplay
context, when evaluated in the kinds of situations a player might
face.

4.2 Are the Agent’s Strategies Diverse?
In this section, we evaluate the distribution of strategies used by the
original agent, hybrid agent, and human players. In this context, a
strategy is considered to be the order in which the player collects (or
discards) any items and kills the enemies. To simplify the exposition,
we only report the strategy of the player during the first round.

In the first round of the Arena, there are two items and three
enemies spawned. The items include a “Stone Sword” and an “Iron
Chestplate” and all three enemies are zombies which have a melee
attack but no ranged attacks. One common strategy among the human
trajectories was to first collect the sword then kill all the enemies.
Conversely, the original scripted agent always prioritizes collecting
the items then returns to an open portion of the map and fights the
zombies. Although this is the default behavior of the scripted agent,
stochasticity in the environment and its ability to fight any enemy
within range sometimes results in enemies being killed while it is
trying to collect the items.

Figure 5 shows the distribution of strategies for the first round
among the collected human demonstrations (in the distribution on
the left). This shows that the most common strategy was to first
collect the sword and then kill all the enemies. There were also

4

https://sites.google.com/view/customizing-scripted-agents


Figure 5: Distribution of strategies for the first round of the Arena: Strategies are determined by the order of player events including
picking up items, discarding items, and killing enemies. The following abbreviations are used: Kill enemy, Pick up item, and Discard
item. When picking up or discarding items, the item is either Sword or Chestplate. The ATTACK_ONLY strategy is when the player
attacks the enemies without any item and dies before killing a single enemy.

many other strategies including collecting both items (sword and
chestplate) before killing the enemies and even a strategy in which
the players beat the enemies without the use of any of the items. As
these trajectories included non-experts, there are also a number of
different strategies which are ineffective such as “ATTACK_ONLY”
in which the player died without collecting any items or killing
enemies.

There are fewer strategies employed by the scripted agent (shown
in the central plot in Figure 5) which is to be expected given the
inflexible logic used for selecting the current target. As the envi-
ronment is stochastic and the scripted agent will always attack an
enemy that is within range, there is actually more diversity in the
behavior than might otherwise be expected. The individual strate-
gies share common characteristics as the agent always collected the
sword (“PS”) before the armor (“PC”). Additionally, the first three
strategies (accounting for 77.21% of the strategies employed by the
scripted agent) only vary in whether the player collected the items
and lost (the second strategy) or was able to kill an enemy before
collecting the armor (the third strategy).

The distribution of strategies employed by the agent using the
learned target selection is presented in the right distribution from
Figure 5. The modified agent exhibits a larger set of strategies than
the original scripted agent including strategies unique to the human
demonstrations as well as strategies unique to the scripted bot. The
top two strategies are bot prominent strategies employed in the
human demonstrations (“PS_K_K_K” and “ATTACK_ONLY”). The
third most common strategy, “PS_K_PC_K_K,” is also the third
most common strategy exhibited by the scripted agent and is not
shown in any of the human demonstrations.

The total variation between the distribution of the scripted agent’s
strategies (viewed as a discrete probability distribution) and the
human strategies is 0.8375; whereas the total variation between the
distribution of the hybrid agent’s strategies and the human strategies
is 0.4487. This suggests that the hybrid agent indeed produces more
diverse, human-like behavior.

4.3 Can the Agent Produce Guaranteed
Behavior?

In this section, the hybrid agent is evaluated with respect to preserv-
ing two behavior guarantees provided by the scripted sub-policies:
the use of health restoring items and discarding useless items. As

the training demonstrations were collected from non-experts, some
of the demonstrations contain examples violating the desired be-
havior guarantees. Consequently, standard imitation learning ap-
proaches cannot hope to consistently produce behavior which com-
plies with the desired guarantees much less provide guarantees about
the agent’s behavior. To evaluate these behavior guarantees, we de-
fined two related constraints to check for behavior violations on the
trajectories of the hybrid agent and the human demonstrations.

As we would like to ensure that the agent uses health restoring
items when needed, a constraint was defined which ensured that the
agent did not have any unused health recovery items in its inventory
when it died. Five of the 33 human demonstrations (15.15%) violated
this constraint. As expected, none of the trajectories collected from
the scripted agent nor the hybrid agent violated this constraint.

As items are automatically picked up when they are touched by
the agent, the second constraint was defined more flexibly and simply
checked if the agent discarded the useless items within 1 minute.
This constraint was violated by 23 of the 33 human demonstrations
(69.70%). Furthermore, the majority (68.86%) of the states from the
human demonstrations included inventories containing useless items.
As with the previous constraint, neither the scripted agent nor the
hybrid agent violated this constraint.

4.4 Can the Learned Controller Affect Other
Scripted Subroutines?

The behavior of the agents and humans were also evaluated with
respect to the occupancy of the map across all trajectories visual-
ized as heatmaps in Figure 6. This represents another dimension of
playstyle in which the scripted agent is distinct from the human play-
ers. Although this form of evaluation does not capture the specific
context or subgoal of the player, it provides insight into the aspects
of behavior across trajectories.

All the heatmaps show a moderate degree of occupancy for points
on the left and right of the map. These points correspond to the
item spawn locations; their high visitation suggests that both the
humans and the agents have a tendency to collect these items. The
human demonstrations (shown in the left heatmap) show a somewhat
uniform occupancy for the locations between the items with a slightly
higher occupancy in the center where the player is spawned.

The heatmap for the scripted agent (shown in the center heatmap)
shows a high frequency of occupancy for the left, right, top and

5



(a) Gladiator Arena (b) Human Demonstrations (c) Scripted Agent (d) Learned Agent

Figure 6: Heatmap of player occupancy information given a top-down view of the scenario for the human demonstrations, scripted
agent, and learned agent. Frequently occupied locations are shown in red. Item spawn locations are shown on the left and right and
the “home square” location (used by the scripted bot) is shown on the top and bottom of the arena map.

bottom points of the map. The high occupancy locations in the top
and bottom of the map are locations known to the scripted bot and
used as a default location when there are no other targets to pursue.
This ensures that the agent will not move to a location where it may
be cornered by enemies. The degree to which these four locations
are occupied by the scripted agent illustrates the consistency of
its behavior across trajectories which is distinct from the behavior
shown in the human demonstrations. In contrast, the hybrid agent’s
occupancy map does not prioritize the top and bottom locations and
visually mimics the occupancy of human demonstrations.

4.5 Is the Agent’s Overall Performance Affected?
The overall performance of an agent in a trajectory is evaluated by
recording the level the player was able to reach. The performance
of the humans, scripted agent, and hybrid agent across the collected
trajectories is shown in Figure 7. The distribution of human perfor-
mance shows a distinct split in ability in which some demonstrations
were able to complete all 7 levels whereas many others were defeated
on levels 2-4. The scripted agent showed a similar trend around lev-
els 2 and 4 but had significantly fewer trajectories reaching level 7
(12%). The hybrid agent showed some performance degradation as
it was defeated more often during level 2 and seldom reached the
4th level and beyond.

The second level introduces multiple ranged units which often de-
feat the players. The successful human demonstrations often employ
a number of different behaviors such as strafing, dodging, and using
ranged weapons themselves for which the bot does not have any

corresponding subroutines. As a result, the use of a more human-like
SelectTarget controller can hinder the bot’s performance when
human-like subroutines are necessary for the current target to be
achievable.

5 DISCUSSION
We have presented a robust and sample efficient approach for enhanc-
ing the behavior of existing scripted agents. We defined a controller
within such scripted agents and developed an efficient technique for
deriving supervisory signal from player trajectories without requir-
ing fine-grained alignment between the human and bot trajectories.
This approach was demonstrated within Minecraft and was shown to
exhibit more human-like behavior with respect to gameplay strate-
gies and map occupancy.

There are also a number of remaining open questions pertaining
to this approach. There are challenges in evaluating human-like
behavior, especially in the context of a hybrid agent as we would
like to evaluate the aspects of behavior affected by the learned meta-
controller. In the presented hybrid agent, the impact of the meta-
controller had a direct impact on the order in which the player
interacted with the items and enemies in the surroundings (strategy).
These strategies provided a compact representation of the trajectory
which was heavily influenced by the learned component allowing
comparison and quantitative evaluation. However, this evaluation is
specific to the given task and parameterization of the hybrid agent
and does not necessarily generalize to other scenarios or hybrid
agents. Additionally, an important property of the labeling function

Figure 7: Distribution of the last level reached in the human demonstrations, scripted agent, and hybrid agent.

6



is the use of the δ parameter to enable alignment between the human
and agent data at a higher granularity. This avoids alignment issues
between the human actions and the scripted subroutines, but we
leave a careful study of the effect of δ for future work.

In the presented empirical evaluation, the accuracy of the labeling
function on the hybrid agent’s trajectories is rather low (31.85%).
This surprisingly low consistency between an agent’s Select-
Target parameter and observed behavior prompts a number of
related questions. Is consistency required between the labeling func-
tion and the scripted options?

Sample efficient imitation learning could enable customizing
the hybrid agents to individual players or playstyles and exposing
meaningful parameters to enable developers to tune the playstyles
of these hybrid agents.

REFERENCES
[1] D.M. Bourg and G. Seemann. 2004. AI for Game Developers: Creating Intelligent

Behavior in Games. O’Reilly Media, Sebastopol, CA. https://books.google.com/
books?id=cKKGAgAAQBAJ

[2] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. 2015.
Heads-up Limit Hold’em Poker is Solved. Science 347, 6218 (January 2015),
145–149.

[3] M. Cerny, T. Plch, M. Marko, J. Gemrot, P. Ondracek, and C. Brom. 2017. Using
Behavior Objects to Manage Complexity in Virtual Worlds. IEEE Transactions
on Computational Intelligence and AI in Games 9, 2 (2017), 166–180.

[4] Leo Galway, Darryl Charles, and Michaela Black. 2008. Machine learning in
digital games: a survey. Artificial Intelligence Review 29, 2 (01 Apr 2008), 123–
161.

[5] Matthew J. Hausknecht and Peter Stone. 2015. Deep Recurrent Q-Learning for
Partially Observable MDPs. In AAAI Fall Symposia. The AAAI Press, Palo Alto,
CA, 29–37.

[6] Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari
Ostendorf. 2016. Deep Reinforcement Learning with a Natural Language Action
Space. In Proceedings of the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Assocation for Computational
Linguistics, Berlin, Germany, 1621–1630.

[7] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. 2016. The
Malmo Platform for Artificial Intelligence Experimentation. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16).
AAAI Press, Palo Alto, CA, USA, 4246–4247. http://dl.acm.org/citation.cfm?id=
3061053.3061259

[8] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and Hal
Daumé, III. 2018. Hierarchical Imitation and Reinforcement Learning. In
Proceedings of the 35th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research), Jennifer Dy and Andreas Krause
(Eds.), Vol. 80. PMLR, Stockholmsmässan, Stockholm Sweden, 2917–2926.
http://proceedings.mlr.press/v80/le18a.html

[9] YuXuan Liu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. 2018. Imitation
from observation: Learning to imitate behaviors from raw video via context
translation. In 2018 IEEE International Conference on Robotics and Automation
(ICRA). Curran Associates, Inc., Red Hook, NY, 1118–1125.

[10] OpenAI. 2018. OpenAI Five. https://blog.openai.com/openai-five/. (2018).
[11] Steven Rabin. 2017. Game AI Pro 3: Collected Wisdom of Game AI Professionals.

A K Peters/CRC Press, Boca Raton, FL, USA.
[12] Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher

Ré. 2016. Data Programming: Creating Large Training Sets, Quickly. In Advances
in Neural Information Processing Systems 29. Curran Associates, Inc., Red Hook,
NY, 3567–3575.

[13] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
Timothy Lillicrap, Karen Simonyan, and Demis Hassabis. 2018. A general rein-
forcement learning algorithm that masters chess, shogi, and Go through self-play.
Science 362, 6419 (2018), 1140–1144.

[14] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and Eric Postma. 2006.
Adaptive game AI with dynamic scripting. Machine Learning 63, 3 (01 Jun 2006),
217–248. https://doi.org/10.1007/s10994-006-6205-6

[15] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Behavioral cloning from
observation. In Proceedings of the 27th International Joint Conference on Artificial
Intelligence. AAAI Press, AAAI Press, Palo Alto, CA, USA, 4950–4957.

[16] Faraz Torabi, Garrett Warnell, and Peter Stone. 2018. Generative adversarial
imitation from observation. (2018). arXiv:1807.06158v3

7

https://books.google.com/books?id=cKKGAgAAQBAJ
https://books.google.com/books?id=cKKGAgAAQBAJ
http://dl.acm.org/citation.cfm?id=3061053.3061259
http://dl.acm.org/citation.cfm?id=3061053.3061259
http://proceedings.mlr.press/v80/le18a.html
https://blog.openai.com/openai-five/
https://doi.org/10.1007/s10994-006-6205-6
http://arxiv.org/abs/1807.06158v3

	Abstract
	1 Introduction
	2 Related Work
	3 A Case Study in Minecraft
	3.1 Defining a Learned Controller
	3.2 Deriving Supervision from Player Trajectories
	3.3 Training the Controller
	3.4 Summary of the Approach

	4 Empirical Evaluation
	4.1 Does the Controller Generalize Across Human Trajectories?
	4.2 Are the Agent's Strategies Diverse?
	4.3 Can the Agent Produce Guaranteed Behavior?
	4.4 Can the Learned Controller Affect Other Scripted Subroutines?
	4.5 Is the Agent's Overall Performance Affected?

	5 Discussion
	References

