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ABSTRACT
Recommender systems are a flourishing domain in computer sci-
ence for almost 30 years now. This rising popularity follows closely
the number of data collected all around the world. Each and ev-
ery internet user produces a huge amount of content during his
lifetime. Recommender systems proactively help users to navigate
these pieces of information by gathering, and selecting the items to
users’ needs. In this paper, we discuss the possibility and interest of
applying our Multi-Objective Ant Colony System called AntRS to
recommend items in different application domains. In particular, we
show how our model performs better than the state-of-the-art mod-
els with music dataset, and describe our work-in-progress with the
museum of fine arts in Nancy (France). The motivation behind this
change of application domain is the recommendation of progressive
sequences rather than unordered lists of items.
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1 INTRODUCTION
Noah, an athletic young man, decided to listen to music while run-
ning, and found the perfect app for that. It allowed him to generate
a playlist of recent songs that are adapted to his preferences. This
application knew how to renew its recommendations from one
session to another making him discover new music while, in the
same time, proposing titles that he already knew and loved.

A few blocks away, Kate decided to go to a museum before her
next university course. As she had only 2 hours free, she installed on
her smartphone the mobile application provided by the museum to
be recommended an ideal path taking into account both her eclectic
tastes and her aversion to the crowd. She was willing to travel
longer distances to avoid congestion points. But most importantly,
she did not want to miss her favorite painting.

The same scientific problematic is behind these 2 stories: being
able to provide adapted and coherent sequences to users. The target
state can be a relevant painting to see, a museum exit to reach or an
energetic song to recommend when finishing the race. But the way
users get to this target state is also important. The sequences should
be as personalized and progressive as possible while offering a
good compromise between multiple objectives (precision, diversity,
density of population and distance within the museum for Kate;
precision, novelty, serendipity and music features such as recency,
and tempo for Noah).

To address these issues in the music application domain, we
proposed a multi-objective recommender system called AntRS [28].

The latter belongs to the multi-agent system family in which agents
wander through a graph where nodes represent the items of the do-
mains (music titles) and edges represent links between those items.
AntRS is amulti-objectivemodel because it integrates several classic
objectives considered for a good recommendation (similarity, diver-
sity, novelty, preferences), and searches for an optimum between all
of them. In this paper, we aim at investigating the generic nature of
our model. We argue that it is possible to add or remove objectives
on the fly, and that AntRS can be applied on different domains. In
this paper, we thus propose to extend AntRS with new results show-
ing the flexibility of our model through a new dimension called
progressiveness. We also discuss the possibility to translate our
model to another application domain (cultural heritage) which is
an on-going research.

This paper is organized as follows: Section 2 presents the related
work on multi-objective recommenders and their application in
music and museum domains. Section 3 describes our AntRS model.
Section 4 describes the experiments carried out and the results
obtained in music as well as our plan to apply our model in the
museum space. Finally Section 5 concludes this paper and presents
our perspectives.

2 BACKGROUND
2.1 Ant Colony Systems
TheAnt ColonyOptimization algorithms (ACO) are Nature-inspired
programming algorithms that computationally reproduce the pheromone
communication between ants to find shortest paths between a start-
ing node and a target node. Our model, called AntRS, is derived
from one of those systems: the Ant Colony System (ACS) algo-
rithm [9]. The latter relies on a pseudo-random proportional rule
to favor exploitation of the pheromone information, and a local
pheromone update to diversify the search performed by ants during
one iteration. In other words, each time an ant takes an edge, it
deposits some pheromones along its way, regardless of the qual-
ity of the path. As explained by Dorigo, this version of the ACO
algorithms is known to “decrease the pheromone concentration on
the traversed edges, thus encouraging ants to choose other edges and,
hence, to produce different solutions. This makes it less likely that
several ants produce identical solutions during one iteration”. We took
inspiration from the ACS algorithm so as to identify relevant items
in the very large exploration space of online services (e.g. millions
of songs on music streaming services, and hundreds of paintings
in a museum), recommend them to users, and evaluate the quality
of recommended lists through several joint metrics (precision, di-
versity, novelty...). We refer the reader to the Dorigo and Birattari
paper [9] for all the details about the model as we will use some



of the notations/equations of their work in the section 3. In the
recent years, many studies have been using multi-agent systems
and more specifically the ACO algorithms. One of the first study
using the ACO in recommender systems was from Semet et al. [34]
in an e-learning system. The authors built a graph where the nodes
represent educational resources and the edges have transition prob-
abilities associated to them. The authors also introduce success
and failure pheromones as an additional information. The system
could however be improved as there is no user model and it also
needs professors to evaluate the possible paths, which could be an
important drawback in a large database. Optimization problems
have also been tackled by ACO algorithms with success. We can
cite [12] which proposed a framework to use multiple ant colony
system for the vehicle routing problemwith time windows, a classic
multi-objective problem where multiple objectives are conflicting
with each other. Since this paper is more focused on applying our
model in two different domains (music and museum), the next two
subsection will focus on recommender systems in these particular
domains.

2.2 Recommender Systems in Music
When it comes to recommending music, a system can either pro-
pose a list of independent items at each time step, or it can suggest
a sequence of items [29]. Let us note that Sequence-Aware Recom-
mender Systems may refer to the order of the past events (i.e. look-
ing for co-occurrence patterns [3] or for sequential patterns [16] in
past sessions) or the order of the future recommendations (such as
in playlists [17, 25]). As recent research has found little evidence
that the exact order of songs actually matters to users [36], we first
limited our state-of-the-art to the recommendations of lists.

Besides its ability to generate recommendation lists, our system
sees the selection of relevant items as a multi-objective optimiza-
tion problem. Most recommenders solely focus on the accuracy
(precision and recall) [32]. Yet, more and more systems attempt
to find a compromise between several dimensions such as preci-
sion, serendipity and novelty [19], or between precision and diver-
sity [23, 47] for example. There are several ways to address this
issue. One can either look for a set of Pareto solutions, considering
that a solution is optimal if it is not possible to make any objective
better off, without making at least one objective worse off [48]. In
that case, the goal of recommender systems is to produce as many
solutions as possible from the Pareto-front solution set. Or one
can rank the items in a single list by aggregating or reordering
the results of each objective taken separately [30]. This list can be
computed at once [14], or come out of a 2-step process consisting
in building several lists of candidate items for the active user and
in merging them [11, 13, 31, 40, 41, 43]. Recommending several
Pareto solutions offers the advantage to leave the choice to the
active user. It can be interesting in some application domains such
as e-commerce where an explicit validation process from the user
is mandatory. However, in the context of online music services,
it is not conceivable to request a user decision at each timestep.
The songs must come one after another without disturbing the
user in his/her main current task. For this reason, we focused on
recommenders which produce only one solution (i.e. only one list
of recommendations).

As a conclusion, our model AntRS is a multi-objective single-list
recommender. Those recommenders usually suffer from several
limitations: they are dependent from the application domain (any
change in the set of objectives has a drastic impact on the imple-
mentation of the model) and they are very time-consuming. To
bypass these difficulties, we rely on a Multi-Agent System (MAS),
and more precisely on an Ant Colony System explained below. MAS
have multiple advantages in our context such as the low compu-
tational complexity, the ability to tackle multi-objective problems
and the resilience to changes. In this paper, we first deepen the
results we got on a music dataset in [28]. Then, we show how this
model can be translated to another application domain. We chose to
apply AntRS to Cultural Heritage, and more specifically to museum
guides, since the visitors’ lists of recommendations should notably
be ordered in sequences so as to minimize the distance to travel
and to tell a coherent story. Thus, this change of context allows us
to extend our model with the notion of progressiveness.

2.3 Recommender Systems in Museums
In the recent years, a trend emerged in recommender systems be-
cause experimentations showed that users needed more than pre-
cise recommendations. Metrics like diversity, novelty, serendipity
slowly were more and more considered into recent systems along-
side user’s contextual information (Is the user alone? Is she/he at
work or at home? . . . ) with Context-Aware Recommender Systems
(CARS) [1]. This recent trend follows the development of technolo-
gies capable of feeding models with contextual and geographical
information like smartphones, GPS or indoor positioning system
[8]. The recommender systems that take into account all of these
pieces of information are gathered under the name Location-Aware
Recommender Systems (LARS) [22].

The tourism domain is an obvious choice to field test algorithms
taking into account the context and the location of user in a real
physical environment. As early as the beginning of the 2000s, some
experimentations were conducted in e-tourism to help visitors find
their way to interesting areas. Cheverst et al. [6] were one of the first
to propose a system taking into account contextual information
(location, date, hour of the day, opening and closing hours for
attractions,. . . ). However, no visitor model were created and, thus,
no recommendation were made. Chou et al. [7] propose a system
were works of art are modelled as well as the visits themselves. They
then used these data to model visitors preferences and recommend
them works of art, areas of interest or even a route. To model visitor
preferences, studies have shown that viewing time is correlated
with interest for simple item like clothes. Though it still has to be
tested with more complex items like exhibits (i.e. it might be easier
and less time-consuming to tell if we like a t-shirt or not compared
to a 5x3m painting).

In the recent years, a lot of studies expanded the work already
done by using new technologies as well as advancement in recom-
mender systems in general. Some of those studies are particularly
interesting for our current work. For example, Van Hage et al. [37]
created a model capable of guiding visitors through the Rijksmu-
seum in the Netherlands. The algorithm takes into account the
visiting time specified by the visitors, the ratings given on already
seen exhibits or the distance between the different items available
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for the recommendation. However this study lacks some impor-
tant points: the authors only simulated the visit and visitors had
to manually rate what they saw to feed the recommender system,
potentially degrading the user experience. Woerndl et al. [42] tried
to alleviate this problem by creating an algorithmwhich proactively
proposes recommendation to the user based on internal metrics
computed on contextual information. Nonetheless, the users still
had to validate afterwards if the recommendation was made at a
good moment or not.

Some studies focused on other subject specific to tourism like
how the crowd might impact the visitor experience and how to
manage it as best as possible [27]. The authors in [45] performed
an extensive study in the Louvre museum on more than 24,000
visitors with Bluetooth sensors and a mobile application to track
their location, giving some interesting insights on the behavior of
the visitors. Based on the duration of their visit, the visitors were
divided in two groups: the short-stay and the long-stay visitors.
It was found that these two groups, despite not having the same
visiting time, were mostly looking at the same works of art and
taking the same paths. These findings illustrate the importance of
having a way to manage the crowd.

Finally, other studies highlighted how a single person may be-
have while visiting a museum. Veron and Levasseur [39] in an
ethnographic study in the Centre Georges Pompidou were able to
categorize four visiting style: (1) the ant who looks at every artwork
in the scenography order, (2) the butterfly who performs a zigzag
visit, alternating between each side in a room, (3) the grasshopper
who progresses in the museum by doing big leaps to only look at a
few selected pieces interesting to him, and (4) the fish who stays at
the center of the room to have a quick look from away to all the
exhibits before going into another room. Recent studies have tried
to retrieve or to use these visiting styles in recommender systems.
Like so, the authors in [21] did an experiment where 140 visitors
were put in a room with paintings and an audio-guide. Based on
how the visitors behave, the authors conclude that the four visiting
style were retrieved and that it was possible to predict the visiting
style of a single visitor relatively early. They nuanced their results
because, unless [39], they showed that visitors were able to change
from a visiting style to another during the visit. This study did
however not include a recommender system. Finally, Lykourentzou
et al. [24] developed a simulation were entities wandered through a
virtual museum based on the four visiting styles. They then showed
that with intelligent recommendations, it was possible to increase
the satisfaction of the entities at the end of the visit. The study was
however not verified in a real life setting.

3 ANTRS MODEL
AntRS has been built with several goals in mind: (1) be as generic
as possible, (2) be able to include several competing objectives in
a single list, (3) be resilient to changes in the environment (new
items, new preferences,. . . ). As explained previously, our model
takes inspiration from the ACS algorithm because the latter gathers
all the quality needed to satisfy those objectives. However, we want
to point out the differences between the classic ACS and our model
AntRS. In this section, we will outline those differences as well as
new results in comparison to our previous study.

3.1 Graph creation
The first step before running our model is to create the graph the
agents will roam on. To do so, we created nodes corresponding to
items of the domain and applied a selection algorithm to create
edges between these nodes, as working with a complete graph was
beyond the realm of possibilities giving the usually huge number
of items. At this point, we formulated two assumptions to help us
construct the graph: (A1) past sequences created by previous users
represent useful domain knowledge which should be exploited, and
(A2) past sequences done by previous users are not always the best
possible ones and could have been improved with clever recom-
mendations. The general intuition behind these two assumptions
can be explained like so:

• (A1): users consult items that satisfy their needs in the best
possible way, thus there is interesting patterns and knowl-
edge to exploit from these consultations;

• (A2): given that users do not generally browse all the existing
items to select the perfect ones for their needs, it is safe to
assume that another sequence could have satisfied the needs
of users in a better way.

However in this work, we did not prove or disprove these as-
sumptions, we simply used them to help building our graph.

To take into account these two hypotheses, we first computed
the number of transitions (i.e. co-consultations) between each pair
of items in our dataset. We added all the transitions above a specific
threshold, and only some of those below this threshold as edges.
Finally, if a given connectivity degree was not reached, we added
new edges between items who were not connected in our dataset
to allow our model to discover new potential interesting paths
not known by users. The process of creating an edge is shown in
Equation 1.

ei j =


if ti j ≥ m

or if ti j < m and q < ti j where q ∈ [min til ; log(max til )]

or if ti j = 0 and if deд(i) < d then pick a random
transition until deд(i) = d

(1)
where ei j is the presence of an edge between vertices i and j,

ti j is the number of transitions performed from item i to item j by
the users in the dataset,m is the threshold where transitions are
not directly added to the graph as edges, q ∈ [min til ; log(max til )]
is a random variable uniformly distributed,min til is the minimal
number of transitions between the item i and all the others items
l ∈ Vi where at least one transition has been found, deд(i) is the
current degree of the node i in the graph and d is a parameter
specifying the minimal degree each vertex must have in the final
graph.

For our first study in [28], we only created one graph using all the
data available with all the training users. This choice was justified
by the fact that it takes less time to do so as the graph can be huge.
Moreover, the edges in the graph reflect the global knowledge of
all the user in the system. In this paper, we tested another way to
proceed by creating a graph per test user. To do so, we computed
thenmost similar neighbours of the active user based on the known
ratings with a classical cosine similarity measure. Those n users
were then used to create the graph as explained above.
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3.2 Objectives
It is now widely admitted that the sole precision is not sufficient
to produce good recommendations to users. In [28], we proposed
to define a set of 4 concurrent objectives that often have to be
considered in the literature while recommending a list of items. In
this paper, we aim at showing that these objectives are transposable
in different application domains, guaranteeing the generic nature
of our approach. For the purpose of this study, we also added a
fifth objective – called progressiveness – whose relevance will be
discussed depending on the application domain.

The ability to add objectives, modulate their importance or re-
move them on the fly is essential for having an adaptive model. To
address this issue, we chose to include as many colonies as objec-
tives in our model where each colony is specialized in maximizing
its own objective. To do so, we modified the way the ACS model
computes the distance d between two nodes of the graph. The rest
of this Section describes the equations used to compute the distance
for each colony.

Similarity - The goal of this colony is to find items as similar as
possible of what the user previously viewed or is currently viewing.
A lot of methods exist to compute the similarity of two vectors and,
based on our dataset and on the metadata available, we decided
to use a cosine similarity measure [35]. To compute the distance
value on the edges of the graph, we simply computed the cosine
similarity between the two items represented by the vertices. More
formally, for an edge (i, j), its associated distance di j is computed
with the cosine similarity between the vectors of the descriptive
characteristics of the items i and j.

di j =
1

sim(Ci ,Cj )
(2)

whereCi are the characteristics of the item i . The item character-
istics depend obviously on the dataset and on the meta-information
available but, we can formalize that each item of the dataset is
described by n characteristics as follow Ci = {c1, c2, . . . , cn }. We
used the multiplicative inverse to transform the similarity metric
sim ∈ [0; 1] into a distance d ∈ [1;+∞]. Therefore, a distance value
near 1 on an edge (i, j) means that the two items i and j are similar.

Diversity - This characteristic and the similarity are often de-
scribed together as they are both related to the distance/correlation
between the items liked by the user and his recommendations. But
unlike similarity, diversity depicts how dissimilar two items are
relatively to each other. Similarity and diversity are complement-
ing each other in the sense that they are both needed to adapt
the system to the needs of different users [18]. To compute this
objective, we chose to apply one of the classic diversity metric
which is obtained by computing the inverse of the similarity be-
tween two items, as shown in Equation 3. As for the similarity, we
used the multiplicative inverse of the diversity to obtain a distance
d ∈ [1;+∞].

di j =
1

1 − sim(Ci ,Cj )
(3)

Novelty - The goal of this colony is to search for items that are
not yet known by the user. Novelty is an important characteristic of
a recommender system to avoid a potential lack of interest of users
due to too much foreseeability in the recommended items [38]. To
determine if an item is novel or not relatively to a specific user,

we used the work of Zhang [46] who defined the novelty as a
notion composed of three characteristics: (1) Unknown: the item is
unknown to the user, (2) Satisfactory: the item is liked by the user,
(3) Dissimilarity: the item is dissimilar to the other items known by
the user. The author proposed to evaluate the novelty of the item i
for the user u as follow:

novelty(i,u) = p(i |unknown,u) · dis(i,pre fu ) · p(i |like,u) (4)

where p(i |unknown,u) is the probability that the user u does not
know the item i , dis(i,pre fu ) is the dissimilarity between i and the
set of items in the users’ profile and p(i |like,u) is the probability
that u will like i . However, the dissimilarity and the satisfaction of
the user relatively to i are closely related to other objectives in our
model, respectively maximized by the diversity colony and by both
the preferences and the similarity colonies. Hence we decided to
trim down the Equation 4 to the probability p(i |unknown,u) only
(see Equation 5).

p(i |unknown,u) = −loд(1 − popi ) (5)

where popi is the popularity of item i .
Preferences - The preferences characteristic corresponds to

what the user really likes. It intersects with the similarity notion
but, again as with diversity and novelty, we think that preferences
express another aspect of a good recommendation for a user. The
similarity characteristic allows the recommender to propose items
that are similar to the preferences of the user, but it is not guaranteed
that she/he will like those items. It is for example perfectly common
to both like and dislike some songs coming from the same album
and artist, yet those songs will probably be treated as very similar
relative to each other. The preferences characteristic favors items
that are known to be liked by the user.

The goal for this colony is to find a sequence in the graph priori-
tizing items that are already known to be liked by the user. Thereby,
items must have criteria conveying how the user like an item or not.
This can be done either with explicit feedback (e.g. item rating,. . . ),
with implicit feedback (e.g. number of times the user viewed an
item,. . . ) or with a combination of both. The nature of the feedback
will heavily depend on the domain, but we can formalize that each
collected information concerning the behavior of a user on an item
must be taken into account. Let Cu be the set of criteria represent-
ing all the actions that a user u may perform on the items of the
system, thus cu,i is the sum of all interactions specific to a single
criterion c that a user u performed on an item i (e.g. the number of
times a user u viewed i). To aggregate all the different interactions
possible in a single value, we use the presumed interest formula
proposed by Castagnos et al. in [5] and described in the Equation 6.

presumed interestu,i = vmin +

∑
c ∈C

(w(c) · c(u, i))∑
c ∈C

w(c)
·
(vmax −vmin )

cmax

(6)
where c(u, i) corresponds to normalized values given to the item

i by the user u to each criterion c ,w(c) is the weight of the criterion
c ,vmin andvmax are the minimal and maximal expected values for
the presumed interest and cmax is the maximal value that c(u, i)
can take regardless of the criteria. In our case, we considered the
following criteria for each song: number of consultations, number
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of skips, number of bans (when the user do not want to listen to
the song ever again), and number of likes.

Progressiveness - While the majority of the recommender sys-
tems propose a list of items ranked from most likeable to less like-
able, we think that an ordered sequence of items could be more
useful to the user in some specific domain. While a simple top-n
list is generated from a single starting point, which is usually the
user model at a time t , a well-crafted sequence will have a starting
point, an ending point and a meaningful path to go from the former
to the latter. In certain domain like e-education, recommending a
progressive enough sequence (i.e. a sequence of courses progressing
through skill level neither too slow nor too fast) is a key element
to guarantee the user a good learning experience. One of the key
element to a sequence is the progression between each item: a too
slow progression and the user will stagnate, a too fast progression
and she/he could be lost or feel that there is no progressiveness
at all in the recommended list of items. In the context of cultural
heritage, the progressiveness can be linked to the distance to go in
a museum and/or to the semantic links between items so as to tell
a coherent story through the recommended tour.

Progressiveness colony - The concept of progressiveness is
tied up to our goal of finding a good sequence of items. Contrary to
the majority of recommender systems, we not only want to provide
a list of items but a sequence having a beginning, an end and
where each item makes sense one to another. As stated before, in a
museum, a good recommended sequence could consist of exhibits
related in one way or another (i.e. from the same artist or from
the same period) and located close to each other. Such a sequence
could then slowly progress to another artist or a different section
of the museum. Thus our goal is to recommend a sequence that is
progressing neither too slow nor too fast: we call this the optimal
progressiveness o. This metric is used to ensure that the agents
of the progressiveness colony find a tour where each node offer a
good progressiveness in relation to its predecessor and successor
nodes. To do so, we computed o based on the first and the last items
of a given sequence for a specific user.

on =
czn − can

s
(7)

where on is the optimal progressiveness value of the nth char-
acteristic of a specific sequence, czn is the nth characteristic of the
last item z of the sequence, czn is the same for the first item of the
sequence and s is the number of items in the sequence. The Equa-
tion 7 will be applied for them item characteristics, resulting in a
m-sized vector of optimal progressiveness values (o1,o2, · · · ,om )

for the specific sequence. This vector will then be used in the calcu-
lation of the distance of an edge (i, j) for the progressiveness colony.
This method implies to have numerical characteristics to apply the
equation, like for example the tempo of a music track or the date
of a painting.

The optimal progressiveness o value is then used to compute the
distance d between two nodes of the graph.

di j =

m∑
n
won ·

c jn−cin
on

m∑
n
won

(8)

wherem is the number of item’s characteristics considered, on is
the optimal progressiveness value of the nth characteristic for the
sequence, won is the weight of the nth characteristic for the user
and depending on his preferences and c jn is the value of the nth
characteristic of the item j.

3.3 Merging tactics
In the previous section, we described five objectives that could
provide suitable recommendations for users. Each of these five
objectives is associated to a specific ant colony in our model. Thus,
after this step, we are left with as many lists of recommendations
as colonies, where each one should represent a part of the final
recommended list. In order to build it, we needed a tactic to merge
all the colonies’ lists into one. To do so, we propose two techniques
described below.

Merging colony - The first merging tactic relies once more on
the ACS algorithm but with one additional colony that we called
“merging colony”. Starting from the set of items found by the other
colonies (step 1), the merging colony considers all the objectives at
once with a weighted sum to calculate the distances on the graph’s
edges (step 2), as shown in Equation 9.

di j =
∑

col ∈colonies

w(col) · di j (col) (9)

wherew(col) is the weight representing the expected importance
of the colony’s objective in the final recommendation. To estimate
those weights, we calculated the average values of each objective
(similarity, diversity, novelty and preferences) on the last n sessions
processed of the user. This gave us the general importance of each
objective while taking into account contextual information and
recent tendencies in the user’s behavior. We also built a new graph
for this path of the algorithm. To construct it, we used all the items
in the lists found by the other colonies as vertices, we added edges
to each consecutive pair of items in the lists and finally we added
random edges in the same way that is described in the last part of
the Equation 1 to give the possibility of new paths to be found and
chosen by the merging colony’s agents.

Lists merging - For the second merging tactic, we calculated
the weight w(col) of each objective in the same way that for the
merging colony (see above). We then built the list step by step by
considering all the items found by the different colonies.We iterated
through all the available items for each step of the list construction
and we added to the final recommended list the item which yield
the best amelioration towards the expected values. This process
was stopped either when the remaining items degraded the list’s
metrics, when there was no items left or when the last item of the
initial listened session was found.

4 EXPERIMENTS IN DIFFERENT
APPLICATION DOMAINS

4.1 Music
Our first evaluation of AntRS was done in the music domain due to
the ease of getting data [28]. Wewill not discuss the results obtained
in this study which showed the legitimacy of our multi-objective
approach represented by separate colonies, thus we refer the reader
to our last article [28]. In this paper, we will present the results
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obtained with two major differences in comparison to our previous
study: we changed the way users are selected to build the graph in
the training set so as to validate the robustness of our model, and
we built a new graph for each user rather than having the same
graph for all users to improve performances. We used the same
dataset as previously from Deezer with 3,561 unique users, 178,910
unique songs, and 1,871,919 listenings from which we randomly
chose 500 users to work with. But first, let us describe how we
proceed to evaluate our model.

We compared the performances of AntRS with four state-of-
the-art algorithms capable of producing lists of items in the same
conditions than our model. The first three are classical techniques
spanning most of the work in the recommender systems domain:
UserKNN [4], TrustMF [44], and SVD++ [20]. Those three algo-
rithms were implemented using the Java library librec [15]. We also
implemented a fourth hybrid multi-objective model named PEH
described in [31] to be able to compare AntRS to a state-of-the-art
multi-objective recommender system.We used the three algorithms
described above in the hybridization process. In the first study, we
performed all the tests on a cross-validation dataset with a training
set of 400 users and an evaluation set of 100 users each time. The
goal was to test our model in a situation where it did not know
anything about the new user. We obtained good results, showing
that our model was indeed capable of producing recommendations
to new users. For this paper, we used an approach were 80% of the
user sessions were in the training set and the last 20% were the
evaluation set with the same cross-validation method. The goal was
to prove that our model is also capable of producing good results in
a more classical setting used by the majority of the domain studies.
Either way, for each listening session composed of 5 items or more
in the test base, a recommended session was produced. The users of
the training base had listened to 10,621 sessions while there were
2,569 sessions in the test base.

We used different metrics capturing all the aspects of what we
consider a good recommendation: Precision, Recall and F-measure [2],
Similarity and Intra-list Similarity [47], Diversity and Relative diver-
sity [26, 38]. We also used the preferences and the novelty metrics
of Equations 5 and 6 as well as in [38].

As explained in Section 3, we also proposed and tested two
merging tactics to combine the results of our four objectives. We
also tested to run the merging colony alone, without the step 1 in
the first merging tactic of Section 3.3: in that scenario, the merging
colony operates on the whole graph, rather than on the subgraph
of items recommended by the four colonies.

We also tested a new version of ourmodel where, instead of build-
ing a single graph for all the users (AntRS single-graph) we built
one graph per user based on the n nearest neighbors, as explained
in section 3.1 (AntRS multi-graph).

In Table 1, we present the summary of the results obtained for
all the models tested and their variations. In our test, we used
only the four first objectives colonies (similarity, diversity, novelty,
preferences) without the progressiveness. We will explain why at
the end of this section.

From the results, we can see that both AntRS variations obtain
the best precision, recall and F-measure of all the models tested,
which means that our model is the best to capture the preferences
from the lists initially listened by the users in the training set. AntRS

also outperformed the other models for the diversity, novelty and
preferences metrics, while still managing to maintain a correct
level of similarity. We can also see that AntRS multi-graph manages
to obtain almost the same performance as AntRS single-graph.
We explain this small disparity by our selection of the n neighbor
which could be improved along with the number of users for this
experience (i.e. if the single graph was built with a lot more users
than 500 then a selection process for the users could be useful).

Finally, let us talk about the progressiveness colony. As we stated
earlier, we did not include it in the experiment for two main reasons.
First, we ran some tests beforehand and the results were not con-
clusive. The colony obtained a very poor accuracy without building
apparent progressive sequences. To understand why, we looked
at the original music sessions that the users listened to. With the
help of the Mann-Kendall test, which is designed to detect mono-
tonic upward on downward trend of a variable over time, we found
that there was no monotonic trend in the sessions. These results
match with the recent research done in music showing that the
order of songs is of little importance to users in playlists and music
radios [33, 36].

4.2 Museums
After the music experimentation and to prove that our model is
generic, we now want to apply it to a new domain: cultural heritage.
This is a sensible choice as recommendation in tourism is booming
since the 2000s and we wanted to work in a partnership with a
museum in our city. Furthermore, the cultural heritage brings a lot
of new challenges that are specific to the physical space represented
by a museum, like for example managing the crowd in the museum,
taking into account the physical space of the museum, taking into
account the state of the visitor (young, old, tired, in a hurry, . . . ). In
this section, we will describe the museum, the experience we are
currently doing, the data we are collecting and what we plan to do
with these data.

The museum - We are currently working with the museum
of fine arts1 in Nancy, France. This museum is well-known for its
fifteen century to today collection of paintings, statues and mod-
ern art works. It has close to 130,000 visitors each year which are
welcomed in a 9.000m2 classified historic building. The museum
permanently presents about 400 works of art, without counting
those stored in the archives. We currently have a partnership with
the museum where we have access to their internal resources (in-
formation on pieces of art like artist, date of creation, title and so
on). The museum also granted us a full and free entry for us and
the experimentation’s subjects.

Experimentation - As we said earlier, an experimentation is
ongoing in the museum of fine arts. We are currently recruiting
people to visit the museum. To analyze their route, we consid-
ered three possible solutions: (1) a manual tracking with someone
following the visitor and noting his positions, like in [39], (2) an
indoor tracking device with the help of a smartphone application
or RFID/bluetooth technologies, as explained in [10], and (3) an
eye-tracking device. We decided not use the first solution as it ne-
cessitated a lot of work without giving a better accuracy in the
data. We also did not choose the indoor tracking system because

1https://musee-des-beaux-arts.nancy.fr/accueil-145.html
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Table 1: Experimentations with AntRS as a multi-objective model

Precision Recall F-measure Similarity ILS Diversity RD Novelty Preferences Coverage
AntRS single-graph (4
colonies + lists merg-
ing)

0.379 0.147 0.205 0.942 0.902 0.058 0.073 0.748 0.631 71.68%

AntRS single-graph
(4 colonies + merging
colony)

0.339 0.176 0.215 0.943 0.9 0.057 0.085 0.72 0.718 71.68%

AntRS multi-graph (4
colonies + lists merg-
ing)

0.369 0.149 0.203 0.941 0.901 0.059 0.075 0.737 0.633 71.68%

AntRS multi-graph (4
colonies + merging
colony)

0.329 0.167 0.206 0.944 0.905 0.056 0.081 0.707 0.68 71.68%

AntRSv1 (merging
colony alone)

0.195 0.121 0.142 0.952 0.931 0.048 0.068 0.307 0.39 71.68%

UserKNN 0.213 0.146 0.165 0.947 0.902 0.053 0.085 0.668 0.509 45.5%
TrustMF 0.214 0.148 0.166 0.947 0.903 0.053 0.085 0.667 0.512 45.48%
SVD++ 0.212 0.147 0.165 0.947 0.903 0.053 0.084 0.667 0.51 45.47%
PEH 0.196 0.121 0.143 0.952 0.93 0.048 0.069 0.308 0.391 71.68%

we did some internal testing with smartphone tracking as well as
bluetooth beacons and the results were not good enough for our
needs. We could not get those devices to have a better precision
resolution than a few meters, making them suitable for tracking
people in a whole room but not sufficient to precisely know where
a visitor is in the room and what she/he is looking at. Thus we
chose to use the eye-tracker with the latest version of the Tobii
Pro Glasses 22. These glasses allow us to let the visitor relatively
free: we do not have to follow him to write down his movements
and we do not have to ask him to interact with a tracking device
either. The glasses are still a minor inconvenience to wear but it
was the best compromise available between tracking precision and
visit disruption.

Data - In this experimentation, we have two types of data: mu-
seum data and visitors collected data. The museum data refers to all
the information relative to the museum and to the works of art. We
measured the the museum rooms and we also recorded the exact
positions of all the works of art. The goal is to be able to recreate
the museum virtually and, at least, have a good idea of where the
visitor is and what she/he is looking at exactly at each time during
his visit. The visitors’ collected data refers to the information we
are gathering with the experimentation itself. The Tobii Pro Glasses
2 record a video flow of what the visitor has in front of him while,
at the same time, compute the fixation points (i.e. what the person
is looking at exactly). As we have the video information of where
the user is, what she/he is looking at and for how long, we plan
to build a dataset where those information will be transcribed as
numerical values.

Goals - The goals of this experimentation are multiple. First,
we will build a dataset based on the user data collected during
the experimentation with the eye-tracker. We aim at providing the
community a clean dataset with the information about the museum
space, the works of art and also the precise path taken by all the
2https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/

visitors with timestamp on each movements and stops. With this
dataset, we will be able to do offline experiments with our model
AntRS to confirm that it is working in another domain. We will be
to compute similarity and diversity between pair of exhibits based
on their characteristics (artist, period, style, popularity, subject
portrayed through the work...), but also based on the co-viewing
of exhibits (i.e. we can consider to artworks similar if they are
viewed by the same users through their visit). We will also be able
to integer the progressiveness of sequences, which was not possible
with music. Finally, another area of interest would be to simulate
the museum in virtual reality with crowd behavior based on real
visitors to try to adapt recommendations to users given their crowd
tolerance [24].

5 CONCLUSION
In this paper, we showed that AntRS is still obtaining better results
than state-of-the-art methods despite switching to a more tradi-
tional k-fold method. We also showed that, while not obtaining
the very best results, our new approach consisting of creating a
graph per user is promising and will probably be the way to go with
a larger dataset and some variables tuning. Finally, we discussed
about our ongoing experimentation in the museum of fine arts in
Nancy, France. This experimentation will allow us to test our model
on another application domain to guarantee its generic nature and
to test our fifth objective related to progressiveness.
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