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ABSTRACT
Transfer learning can significantly improve the reinforcement learn-
ing process by leveraging prior knowledge from past learned tasks.
However, how to select an optimal source task for reuse to improve
a reinforcement learning agent is still challenging. In this paper, we
propose a new Policy Reuse framework called Heuristically Adaptive
Policy Reuse (HAPR) that facilitates efficient reuse of source poli-
cies, which is stored in a given Policy Library, by rapidly selecting
the most appropriate policy only with its useful part. For the agent
to reuse in successive tasks, HAPR is also capable of rebuilding
the Policy Library to provide representative policies, whose quality
is guaranteed by using KL-divergence to measure the irrelevance
between policies. Our extensive experiments based on a grid-world
domain show the efficiency and robustness of our method, compared
with the state-of-the-art policy reuse approaches.
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1 INTRODUCTION
Reinforcement learning (RL) [19] is a proverbial framework for an
agent to learn and optimize a policy through the interactions with the
environment and feedback rewards. Most RL methods are faced with
sample efficiency problems, which makes it difficult to learn from
scratch, especially in solving complex tasks. Transfer learning (TL)
[20] can facilitate RL to improve learning efficiency by transferring
past learned knowledge to a new task, which usually consists of
three phases: select useful knowledge to transfer, find a suitable way
to transfer and last, execute the transfer process. If the transferred
knowledge which is incompatible with the target environment is
selected, negative transfer occurs [12]. It is challenging to predict
whether source information is useful in advance.

Policy Reuse is useful to accelerate RL process by reusing past
similar learned policies. Existing researches on policy reuse in-
clude reusing expert suggestions [3, 18], defining the policy simi-
larities in a reward shaping manner [2], modeling policy selection
as Bayesian optimization problems [13], and transferring the ex-
perience instances of a source task to the target task by reusing
these instances to estimate the reward function [9]. However, these
approaches require more extra knowledge for effective transfer. Fer-
nández and Veloso [5] proposed Policy Reuse Q-learning (PRQL)
and Policy Library rebuilding through Policy Reuse (PLPR) where
a learning agent is equipped with a library of previous policies to
facilitate exploration, as they enable the agent to collect relevant in-
formation quickly to accelerate learning. However, PRQL converges

*Corresponding author: Jianye Hao

to a sub-optimal policy in some conditions since negative transfer
exists, and PLPR builds a Policy Library without a clear theoretical
guarantee. Li and Zhang [10] proposed an Optimal Policy Selection
TL method (OPS-TL) to select a suitable policy using a multi-armed
bandit (MAB) method UCB1 [8] during the online learning. How-
ever, OPS-TL needs more performance feedback to evaluate sources
to selection, which takes time to lock a known suitable policy. And
it also requires a manual setting of rate to learn independently.

To address the above problems, we propose a Heuristically Adap-
tive Policy Reuse (HAPR) framework as our contribution. This
framework consists of two parts: the primary part of HAPR for
Transfer Learning (HAPR-TL) and a Policy Library rebuilding part
using KL-divergence (PLKL) as secondary. HAPR-TL reuses a pol-
icy all out during learning until a state called subgoal is reached,
where the policy is selected by evading other inappropriate source
policies. A subgoal of a source policy is a special state defined by
using a state-value function, which is also used to filter out bad
policies or parts. The idea of subgoal is from the concept proposed
by Ruby and Kibler [15]. In order to make HAPR-TL persistent
and become lifelong learning, the secondary PLKL method rebuilds
the library once HAPR-TL finishes. It uses KL-divergence [7] to
measure the distance between two policies and determine whether
to add a new policy into the policy library or not. Our experimen-
tal results on the grid-world domain show our method outperforms
state-of-the-art policy reuse approaches, as HAPR adaptively reuses
the useful knowledge from a policy library that is equipped with
various policies without redundancy.

The main contributions of this paper can be summarized as:

(1) To reuse policy in a state-level and to avoid reuse from the
irrelevant part of the source policy, we draw lessons from the
subgoal method and set the subgoal as a critical state to stop
policy reusing.

(2) To avoid negative transfer with reusing known unsuitable
source policy, we give up the UCB1 exploration. We choose
the successful ratio to the goal of tasks as the evaluation of
source policies and remove the poor policy from the alterna-
tive Policy Library in each episode.

(3) To make the Policy Library more representative, we use KL-
divergence to rebuild the Policy Library.

The remainder of this paper is organized as follows. Section 2
introduces the background of our approach including problem for-
mulation in 2.1 and related works in 2.2 and 2.3. Section 3 presents
our approach in two subsections: Policy Reuse in 3.1 and Policy
Library rebuilding in 3.2. Section 4 gives the experimental results
compared with state-of-the-art methods. Section 5 concludes our
approach and draws the future work.



2 BACKGROUND
2.1 Policy Reuse Problem
RL problems are usually formulated as Markov Decision Processes
(MDPs), which is defined in a 5-tuple <S,A,T ,R,γ >. S is a finite set
of states. A is a finite set of actions. T is a stochastic state transition
function (T = S×A×S →ℜ[0, 1]). R is a stochastic reward function
(R = S ×A × S →ℜ). And γ is a discounted factor (γ ∈ ℜ(0, 1]). A
policy π is defined as a function that specifies an appropriate action
a = π (s) for each state s. An agent following π will get a discounted
total reward Wπ =

∑H
h=1(γ

h−1 · R(sh ,ah )), with reward R(sh ,ah )
feedback in step h. The solution of an MDP is to find an optimal
policy π = arg maxπ E[Wπ ] to maximize the expected value ofWπ .
In practice, the mean of sampled rewardW π is also an evaluating
indicator for the algorithm performance.

To formally describe the policy reuse problem, a domain D is
defined as a sub-tuple <S,A,T > of MDPs. And a task Ω is defined
as a tuple < D,RΩ > with domain D and R of MDPs. A policy
library L is a set of source policies π1,π2, ..,πn , where policy πi
is a trained policy of task Ωi . With different task intervals in the
same domain D, the policy reuse problem is to find a way to learn
the optimal policy π∗Ω of every new task Ω by reusing source policy
selected from a given policy library L.

2.2 Policy Reuse Methods
Compositional Q-learning [16] first prompted the problem of learn-
ing multiple tasks in the same domain by TL. In addition, a different
Policy Reuse context for the lifelong autonomous agent was de-
scribed by Rosman et al. [13]. PRQL [5] optimize gave a classic
Policy Reuse framework to solve this problem. PRQL reuses policy,
which is selected from the Policy Library with its own policy being
trained following the soft-max (Boltzmann distribution) strategy, as
the training policy in a certain probability. A current method OPS-TL
[10] optimizes policy selection method of PRQL by using MAB
method of UCB1 [8]. However, the exploration rate of OPS-TL is
also increased exponentially without effective reuse in a training
episode. And with no contribution, the UCB1 method sometimes
selects a known poorer policy for exploration.

Reuse with exploration leads to that PRQL and OPS-TL can’t
quickly learn a task similar to the source task. And the reserved
selection makes PRQL and OPS-TL cannot get rid of the condition
of reusing unsuitable policy quickly, which leads to negative transfer
at the beginning. By contrast, Our Policy Reuse method HAPR-TL
will lock the selection of the most suitable policy and fully reuse the
useful part of the policy.

2.3 Policy Library Rebuilding Methods
Policy Library rebuilding method provides source policies to serve
future Transfer Learning and responds to the domain structure to a
certain extent.

PLPR proposed by Fernández and Veloso is the only Policy Li-
brary rebuilding method that is associated with Policy Reuse. How-
ever, PLPR lacks intuitive explanation. For library rebuilding and
allowing the mechanics of the environment to be learned, a paral-
lel learning method is proposed by Ollington and Vamplew [11].
However, problems don’t arise just right together in reality.

In addition, the method of Earth Mover’s Distance (EMD) [14]
using Wasserstein Metric can also be used to present the dissimilarity
between policies as an improved method of PLPR. The recent work
on representing similarity between distributions was proposed by
Song et al., which defines a distance between MDPs using EMD
[17]. However, computing EMD needs a high time complexity.

Our Policy Library rebuilding method PLKL optimizes PLPR
with the theoretical support of KL-divergence [7]. So that PLKL can
further solve sequential tasks by using previous source policies as
PLPR does. PLKL computes the KL-divergence in both directions
of each two policies as the criteria for rebuilding the policy library
simply and sufficiently.

3 APPROACH
Our approach addresses the policy reuse problem. It starts with a
Policy Library L, and it uses a policy reuse method to learn an
optimal policy of a target task with a source policy, which is selected
by a policy selection method from L. Our approach has also rebuilt
L for the next task to learn. In this section, we give our policy
reuse framework HAPR to solve the Policy Reuse problem, which
concludes its main part HAPR-TL for policy reuse, with a library
rebuilding method PLKL to assist it, as shown in Algorithm 1.

Algorithm 1 HAPR

Require: Policy Library L
1: loop
2: get a new task Ω
3: πΩ ← HAPR-TL(Ω,L)
4: L← PLKL(L,πΩ)
5: end loop

In Algorithm 1, given a policy library L and a new task Ω, HAPR-
TL learns an optimal policy of Ω by fully reusing policies selected
from L. And PLKL rebuilds the Policy Library L once obtaining the
learned policy. The details of each part are shown in the following
section 3.1, and section 3.2, which are two main components of our
transfer learning framework.

3.1 Policy Reuse with Selection for TL
Considering that the agent cannot foresee whether the knowledge of
source policy is suitable for the target task to transfer, our approach
focuses on the way to select the useful part from given source policies
for reuse. In this section, we introduce our HAPR-TL method in two
parts following: Policy Selection and Policy Reuse.

Policy Selection in HAPR-TL. An intention of Policy Reuse is
to reuse useful parts of source policies not to well-train before. In
our approach, the source policy selection method has three purposes.

(1) To quickly lock the most suitable policy for the target task.
(2) To get the useful part of a selected source policy to reuse.
(3) To stop reuse once the target policy performs as good as the

source policy.

In our algorithms: S stands for the state set containing all the
available states in our domain; L stands for the Policy Library; and
L’ stands for the policy set for selecting source policies. And |S |, |L|
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Algorithm 2 HAPR-TL(Ω,L)

Require: States Set S; target task Ω with its goal state sG ; source
policies in Policy Library L with the Q-function, theC-functions
and the subgoal set for each policy

1: Initialize Target Policy πΩ: ∀Q(s,a) ← 0, ∀C(s) ← 0
τ ← [ ]; L′ ← L; ś ← sG ; ni ← 1, pi ← 0.5 ∀i = 1..|L|

2: for n = 1..N do
3: if sG < τ or ∀ś < τ for subgoals ś of any policy in L′ then
4: if n > 1 then
5: pk ←

pk ·nk
nk+1

6: end if
7: k ← the next index i of πi ∈ L′

8: else
9: pk ←

pk ·nk+1
nk+1

10: for ∀πi ∈ L′ do
11: if 2 · pi < maxπj ∈L′(pj ) then
12: L′ ← L′ − {πi }
13: else
14: д(πi ) ←

∑
s ∈τ [ś,sG ](min{0,Ci (s) − ς})

15: end if
16: end for
17: k ← argi max{д(πi )|πi ∈ L′}
18: end if
19: nk ← nk + 1
20: Get uniform random Initial State s0 ∈ S
21: Get the subgoal ś of πk by τ and the performance of πΩ .
22: [πΩ , τ ]← π_reuse(πk ,πΩ, s0, ś, sG ,τ )
23: end for
24: return πΩ

and |L′ | are the numbers of elements in those sets. ς is a mean-value
threshold of the C-function (ς := 1

|S | ).
Algorithm 2 takes N episodes to train the policy for Ω. In each

episode, our selection method first selects a source policy to reuse
(Line: 3-18) and then revise the state of subgoal (Line: 21). After
that is our Policy Reuse method (Line: 22; shown in Algorithm 3).

For each episode, τ is the sampled state trajectory, which records
all the states passed in the previous episode in order. Only if τ has
reached the goal of the target task and also reaches at least one
subgoal of any source policy in L′ (Line: 8), our policy selection
mechanism will really be implemented (Line: 10-17). Otherwise, it
will select a policy and a subgoal in turn (Line: 3,7).

A success rate p to the goal of a source policy is adjusted in every
episode to indicate the reliability of the policy (Line: 5, 9). Our
selection method stops reusing of poor policy (with a lower p) by
removing the policy from the library L′ for selecting (Line 11-12).

For each source policy πsrc , we first require a subgoal set to
select a subgoal ś for our Policy Reuse method (Line: 21, 22). The
subgoal set includes the subgoals and the goal of πsrc . If some states
in the subgoal set exist in the trajectory τ , our method will revise the
current subgoal ś to one of those states last appeared in τ . Otherwise,
it will select a subgoal of πsrc in turn. Furthermore, if the target
policy πΩ has a higher mean value of total reward W π than any
source policy πsrc in a testing batch, it will degenerate ś to the initial
state s0 of the current episode.

In our approach, we propose a C-function to present the impor-
tance of states. If a source policy only contains Q-function, we will
add C-function to the policy. The values of C can be figured out by
generating a series of trajectories guided by Q . C updates every step
in a sampled trajectory. In a step from state s ′ to s:

C(s) ← (1 − α) · (C(s) + 1) + α ·C(s ′) (1)

whereC is updated in the form of the linear combination of (C(s)+1)
and c(S ′). Stepsize α shares the same value with the stepsize of Q
iteration in our approach. Finally, C needs to be normalized. We use
C-function for both comparing the source policies and obtaining the
subgoal set.

For the trajectory reaching the goal and the subgoal in the previous
episode, we calculate the cumulative value of C over the threshold ς
for every source policy in L′ to compare and select an outstanding
source policy πk (Line: 14, 17):

k ← argimax
∑

s ∈τ [ś,sG ]

(min{0,Ci (s) − ς}) (2)

where τ [ś, sG ] is the set including all the state from ś to sG that the
trajectory τ passes through.

Sharing the same idea with a subgoal method [6], we use C-
function of each source policy to figure out its subgoal set as Algo-
rithm2 requires. In the hth step of a sampled trajectory based on a
source policy, that the state sh is a subgoal of the policy subjects to:

∆C(sh ) > ρ ·max(δC ,∆C(sh + 1)) (3)

where

∆C(sh ) = C(sh ) −C(sh−1) (4)

In Formula 3 and 4, δC and ρ are two positive thresholds, which indi-
cates that ∆C(sh ) > 0 for the subgoal sh . For each source policy, our
approach only adopts its subgoals in a small number, which number
can be effectively controlled by adjusting these two thresholds.

The C-function can also be used to examine how frequently
the training has worked in a state, and also to figure out the KL-
divergence between policies.

The HAPR-TL method finishes with returning the policy πΩ
derived by Q with C included. Our Selection method uses the notion
of subgoal and C-function to avoid negative transfer from source
policies. This method is constructed to match the following Policy
Reuse method.

Policy Reuse of HAPR-TL. As we hand over the duty of sifting
the useful part of source policy to the Policy Selection method, in
Algorithm 2, we character our Policy Reuse method to completely
reuse the given policy. The subgoal ś selected in Algorithm 2 is
used as a signal in our Policy Reuse method shown in Algorithm 3.
Our method keeps reusing the source policy until a given subgoal is
reached and then turns to learn with its own policy.

To reuse policy fully in H steps, we keep reusing policy until a
provided subgoal ś reached (Line: 3-4). After the step arriving ś in
an episode: if we have arrived the goal sG of the target task in the
previous episode, we will use the ϵ-greedy method to correct our
target policy; otherwise we use the random policy to enhance our
exploration (Line: 5-10).

A new state trajectory τneo consists of the initial state s0 and
all the state arrived after an action in each step (Line: 1,12). When
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Algorithm 3 π_reuse (πsrc ,πΩ, s0, ś, sG ,τ )

Require: Source Policy πsrc ; Target Policy πΩ with its Q-value
function and C-value function; Initial State s0 ∈ S; State of
subgoal ś; Goal State sG ; last State Trajectory τ

1: Initialize τneo ← [s0]
2: for h = 1..H do
3: if ś < τneo then
4: ah−1 ← πsrc (sh−1)
5: else
6: if sG ∈ τ then
7: ah−1 ← ϵ_дreedy(πΩ(sh−1))
8: else
9: Get uniform random ah−1 ∈ A(sh−1)

10: end if
11: end if
12: Get state sh after the action ah−1 and put sh in τneo .
13: Update Q:

Q(sh−1,ah−1) ←
(1−α)·Q(sh−1,ah−1) + α · (rh + γ ·maxa (Q(sh ,a)))

14: if sh−1 < τneo then
15: C ′(sh ) ← (1 − α) ·C(sh ) + α ·C(sh−1) + 1
16: end if
17: if sh = sG then
18: Update C: C ← C ′

19: exit
20: end if
21: end for
22: Normalize C with sum of 1
23: return πΩ,τneo

getting a new state s after an action from s ′, Q-function is updated.
The iteration of C-function works at the same time with Q , but it is
just temporarily updated:

C ′(s) ← (1 − α) ·C(s) + α ·C(s ′) + 1 (5)

Formula 5 is slightly different from Formula 1 because C(s ′) is not
really updated. Considering to update C more unbiased, C(s) is only
temporarily updated in the first time reaching a state s during the
current episode. And C is really updated only if the current episode
finally arrives to the goal state SG (Line: 14-18). Algorithm 3 finished
if sG is arrived or time step H is up. And C-function also needs to
be normalized here (Line: 22).

As our Policy Reuse method maximizes the reuse of the policy
part selected, the method will have a good performance at the very
beginning if the part reused is useful, or it will feedback a bad
performance in time and the algorithm will avoid selecting the policy
having a negative correlation with the target task. And it also can
prevent the unbalanced sampling of trajectories in training, so that
the new C generated can be used as a C-function within the source
policy for the PLKL method in the next subsection.

3.2 Policy Library rebuilt with KL-divergence
Follow the previous work settings [5], the policy reuse problem often
considers the situation that an agent is equipped with a policy library,
although HAPR-TL can also learn with itself. In addition, a policy

library can indirectly represent the dynamics of the environment,
which also helps the learning process of the agent.

In this section, we give a policy library rebuilding method to
ensure the independence among source policies. First, to ensure
that each policy in the Policy Library is unique and independent
with each other, we use KL-divergence (relative entropy) [7] as a
simple criterion to measure the dissimilarity between two policies.
Our PLKL method takes the advantages of the KL-divergence of the
C-functions of a source policy and the target one in both directions
shown in Algorithm 4.

Algorithm 4 PLKL(L,πΩ)

Require: Policy Library L with C-value functions; Target Policy
πΩ with its C-value function

1: for πi ∈ L do
2: DKL ← 0; DKL−inv ← 0
3: for ∀s ∈ S do
4: if CΩ(s) > 0 and Ci (s) > 0 then
5: DKL ← DKL +Ci (s) · loд(

Ci (s)
CΩ(s)

)

6: DKL−inv ← DKL−inv +CΩ(s) · loд(
CΩ(s)
Ci (s)

)

7: end if
8: end for
9: if DKL < δ then

10: return L
11: else if DKL−inv < δ then
12: L← L − {πi }
13: end if
14: end for
15: return (L ∪ {πΩ})

We calculate the KL-divergence between the source policy and
the target policy to measure the former can be replaced by the latter,
shown in Formula 6:

DKL =
∑

∀s ∈S,∀C(s)>0
(Csrc (s) · loд(

Csrc (s)

Ctar (s)
)) (6)

where the source policy’s C-function Csrc and the target policy’s
C-functionCtar can be considered as normalized distributions of the
importance of states in their respective tasks. A large value of DKL
in Formula 6 indicates that the original policy is not similar with
the target policy. In Algorithm 4, if every DKL exceeds a threshold
δD = δ (δ ∈ ℜ(0, 1]), the new policy will be joined in the Policy
Library L (Line 15). We refer the PLKL only considering the uni-
direction KL-divergence (without Line: 11,12) as the uni-direction
PLKL (uni-KL) method.

Similarly, the inverse KL-divergence can find out whether the
target policy can replace a source policy:

DKL−inv =
∑

∀s ∈S,∀C(s)>0
(Ctar (s) · loд(

Ctar (s)

Csrc (s)
)) (7)

A small value of DKL−inv value in Formula 7 indicates that the target
policy can replace the source policy. In Algorithm 4, besides joining
the target policy in the Policy Library L, when the value of DKL−inv
is lower than δD while DKL is not, the new policy is decided to
replace the source policy in L (Line: 11,12,15). We refer the whole
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PLKL method as the bi-direction PLKL (bi-KL) method. According
to the asymmetry of KL-divergence, this method can remove similar
policies from the source Policy Library.

Our PLKL method ensures that each policy is independence from
each other with a theoretical guarantee, as KL-divergence can de-
scribe the difference from one distribution to another. KL-divergence
is not the only option for the requirement, Bhattacharyya distance
[1] or JS-divergence [4] can also be used here.

4 EXPERIMENTS
In this section, we provide experimental results on a grid-world
navigation domain. We first give some heat-maps to show the fea-
sibility of the C-function in our results. Then we verify that our
Policy Reuse method HAPR can transfer quickly and avoid negative
transfer, compared with the related methods including ϵ-greedy Q-
learning, PRQL [5] and OPS-TL [10]. We also compare our PLKL
with libraries rebuilt by PLPR [5].

4.1 Experimental Setting
Our experiments use a 24 × 21 grid-world navigation domain with
50 sequential tasks, which are represented by their goals in Figure 1.

Figure 1: The domain of Grid-world2006 with 50 tasks

In Figure 1, the type of grid can only be normal, wall or terminal,
whose functions are introduced below.

Normal grid is the only grid in which the agent can form a legal
state in the MDP process. In our experiments, an agent will be
randomly generated in a normal grid to start a navigation episode
with a number of steps. In each step, the agent will choose one
direction from east, north, west and south with a distance to move
as an action. After an action, the agent will access to a new grid. If
the new grid is the wall, the agent will be transferred back to the last
position and waste one step. If the new grid is the terminal, a reward
of arriving the goal state (only arriving terminal has reward) will be

received and the current episode should be terminated. The terminal
must be fixed in our goal-oriented task.

For ease of description, we named every grid by its column and
row start from "Grid(0,0)" on the top-left, such as "Grid(3,2)" refers
to the terminal grid of task 2 in Figure 1. Without loss of generality,
we set the length of grids’ edge to 1. And we represent the position
of agent within a two-dimensional continuous coordinates (xa ,ya ),
where xa ∈ ℜ[0, 24) and y ∈ ℜ[0, 21). The agent is in grid(x ,y)
when ⌊(xa ,ya )⌋ = (x ,y), where x ∈ N[0, 24) and y ∈ N[0, 21). Each
action can change one coordinate of the agent’s position in length
1 in a direction. To east increase the "xa"; to north decrease the
"ya"; to west decrease the "xa" and to south increase the "ya". The
actual arrival position is affected by an error following a uniform
distribution in a range of (−0.20,+0.20).

This environment has |S | = 301 accessible normal states. We
set α = 0.05, γ = 0.95 for Q-function & C-function update for
all method in experiment. And ϵ = 0.90 as the exploit rate of the
ϵ-greedy method. The parameters of the comparison methods includ-
ing PRQL[5] and OPS-TL[10] are consistent with the best in those
methods. Each method will be trained in N = 4000 episodes and
at most H = 100 steps within an episode. And for each N ′ = 100
episodes, there is a set of test episodes to evaluate the performance
of the target policy trained.

4.2 Experiment Results
In our experiments, the well-trained policies of tasks Ω1, Ω2, Ω3 and
Ω4, whose goals are shown in Figure 1, are chosen into an initial
source Policy Library Linit = {π1,π2,π3,π4}.

Feasibility of C-function. In the first experiment, we choose
tasks Ω46 and Ω29 shown in Figure 1 as target tasks. We compare
the C-function of them with the tasks in Linit .

It is intuitive to see that the tasks corresponding to the same room
(Ω46 and Ω2) in Figure 1 are similar. And the heat-maps in Figure
2 shows that such similar tasks have great similarity with their C-
functions, which is normalized by the sum of 1 in this experiment.
Figure 1 also shows that Ω29 didn’t have any similar task from Linit .
This result manifests that the C-function can be used as a represen-
tative feature of a task. According to this result, we respectively
choose Ω46 and Ω29 as the target tasks in the second experiment and
the third experiment.

In addition, we get the subgoals of each source policy in prepara-
tion for the next experiments. Instead of setting values for δC and
ρ in Formula 3, we sort the states directly according to the form of
Formula 3 and choose the first b (b = 2) states as subgoals for each
source policy πsrc . First, we sample several trajectories according to
πsrc and figure out ∆C(s) and ∆C(s ′) for each state s and the next s ′

in every trajectory. Then, we find out every subgoal s with ∆C(s) > 0
and ∆C(s ′) ≤ 0. We rank them according to their ∆C(s). If their num-
ber is more than b, we take the first b states of them as subgoals in
πsrc ’s subgoal set. Otherwise, until the number of subgoals reaches
b, we will keep picking up the state with the highest value of ∆C(s)

∆C(s ′)
from the rest with ∆C(s) > 0.

In our experiment, the subgoal sets for the source policies in
Policy Library Linit are shown in Table 1. For each task, the states
in subgoal set consists of two subgoals and the goal of the task.
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Figure 2: C-functions of Ω1,Ω2,Ω3,Ω4,Ω46 and Ω29

Table 1: Subgoal and goal for each task in Linit

Task subgoal ś1 subgoal ś2 goal sG

Ω1 Grid(13,5) Grid(16,2) Grid(18,1)
Ω2 Grid(6,6) Grid(5,5) Grid(3,2)
Ω3 Grid(5,15) Grid(2,15) Grid(3,18)
Ω4 Grid(17,15) Grid(18,18) Grid(20,18)

HAPR-TL with a similar task. In the second experiment, we
choose the task Ω46 shown in Figure 1 as the target task. It obviously
has a similar task Ω2 in the Policy Library L.

Figure 3 shows the learning curves of HAPR-TL in our approach,
OPS-TL, PRQL and ϵ-greedy QL top-down when solving task Ω46.
The learning curve is generated by the average discounted reward
W of each method’s on-policy testing, which executed 10 times
after every 100 episodes from 100 to 4000. Error bars of standard
deviations is shrinking to half.

In Figure 3, the average rewardW of HAPR-TL is greater than
0.3 at starting with the first 100 episodes converges quickly in about

Figure 3: Average discounted rewards with suitable πsrc

1000 episodes to a value more than 0.4. Compared with PRQL and
OPS-TL, HAPR has the advantage at "Jumpstart", "Asymptotic Per-
formance", "Time to Threshold" and other evaluate metrics proposed
by Taylor and Stone [20]. Our method learns quickly mainly because
we fully reuse the source policy with a quick selection. However,
the other method have slow selection, and their reuse rate updates as
φ ← γ · φ with γ = 0.95 in every step, which leads to a low learning
rate φ even in the tenth step (φ(10) = 0.9510 < 0.60).

Figure 4: Frequency of reuse from each source task to Ω46

Figure 4 shows frequency curves of the reuse rate of each source
policy in the Policy Library L, where the curve of reusing policy
of Ω2 is obviously higher than other curves in all three algorithms
as HAPR-TL, OPS-TL, and PRQL. Error bars represent standard
deviations.

In Figure 4, HAPR-TL quickly locked the source policy at the
beginning with the highest rate near 100%. It shows that our selection
method is effective to select the right policy. In HAPR-TL, the
exploitation rate for reusing policy of Ω2 did not go down as in
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PRQL or in OPS-TL, because our method has defined the subgoal
for policy reuse problem and actually learns independently when the
subgoal degenerate to the initial state in an episode.

HAPR-TL without any similar task. In the third experiment,
we choose task Ω29 as the target task, since it has no similar task in
the Policy Library mentioned in the first experiment.

Figure 5: Average discounted rewards with unsuitable πsrc

Figure 5 shows the learning curve of HAPR-TL, ϵ-greedy QL,
OPS-TL, and PRQL of Ω29 in top-down order. The curve in Figure
5 is generated in the same way as in Figure 3.

In Figure 5, HAPR-TL can be found to basically exceed ϵ-greedy
QL, while OPS-TL is just close to ϵ-greedy QL. PRQL performs the
worst. Our method performs well at the beginning mainly because it
gets rid of the bad part of policies to reuse since all source policies
are not able to completely reuse.

Figure 6: Frequency of reuse from each source task to Ω29

Figure 6 shows frequency curves of each source policy for learn-
ing Ω29, in the same way as Figure 4. The curve of reusing policy of
Ω4 is obviously higher than other curves in HAPR-TL and OPS-TL.

In Figure 6, without a suitable source policy, reusing whole source
policy quickly abandoned as the frequency curves of reusing each
policy bifurcates in about 300 episodes. However, OPS-TL needs
500 episodes to start this. Our method is better than OPS-TL and
PRQL in the absence of the source policy with its stability since we
still reuse part of policy π4.

Therefore, experiments 2 and 3 empirically demonstrate that
HAPR-TL significantly lowers the sample complexity of reaching
convergence.

Policy Library rebuilt with KL-divergence. In the last experi-
ment, we first show the Policy Library rebuilt using KL-divergence
in uni-direction and bi-direction of PLKL by executing 50 differ-
ent tasks in Figure 1 sequentially performed with Library Linit at
starting.

To show that using the KL-divergence as a similarity measure
between policies performs better than the way used in PLPR, we
review the results of the Rebuilt Library in PLPR firstly. After exe-
cuting each task, it will append the new policy to the Policy Library
i f and only i f maxi (WΩ(πi )) < δ ·Wtask (πΩ). Figure 7 shows its
result with its known best parameter δ = 0.25 [5].

Figure 7: Shadow tasks in Library Rebuilt via PLPR

In Figure 7, the source task distribution generated by PLPR is not
uniform: two source policies exist in one room; some rooms have no
source policy. The two bad conditions cannot be alleviated together
by only adjusting the parameter δ .

Then we show our results of the Policy Library rebuilt by using
PLKL. The PLKL method is good for screening the unique policy of
each room in both uni-direction way and bi-direction way, as shown
in Figure 8,

In Figure 8, to compare the Policy Library generated by the
bi-direction KL-divergence (bi-KL) with the uni-KL: some source
policies have been replaced by new policies in a way. If the threshold
is higher, the source Policy Library after the reconfiguration will
be incomplete in some conditions, and if the threshold is lower, the
source policy will be replaced many times, of course, this does not
affect the availability of the Policy Library.

In this experiment, we also show the comparison of learning effect
among different Policy Libraries used for solving a new task. We
choose task Ω47 to learn. And we set different conditions of initial
policy library:

(1) a normal Policy Library Linit (also the Library with uni-KL)
7



(a) uni-direction PLKL (b) bi-direction PLKL

Figure 8: Shadow tasks in Library Rebuilt via HAPR-TL

(2) a fragmentary Policy Library L′ = {π2,π3,π4}
(3) a policy library L∗ = {π2,π3,π4,π7} generated by bi-KL

Figure 9: ExpectedW with uni-KL and bi-KL and None

Figure 9 shows that reuse from a Policy Library with abundant
policies performs better than not, which affirms the necessity of our
PLKL method. In addition, it shows that PLKL in a bi-direction way
can optimize its effect more. Both the methods of PLKL are stable,
as they solve the problem well.

5 CONCLUSION AND FUTURE DIRECTIONS
This work focuses on multi-task transfer in RL. We propose a new
Policy Reuse framework HAPR, including the method HAPR-TL
for policy reuse and the method PLKL for policy library rebuild-
ing. Our HAPR-TL method enhances reuse efficiency and avoids
negative transfer. HAPR-TL optimizes the Policy Selection method
by evading known unsuitable policies and the unsuitable part of
source policy by giving some subgoals and then fully reuses the
source policy selected until a given subgoal of that source policy
is arrived. In contrast to previous work, our work reuses the policy
quickly at the state-level and avoids negative transfer. In addition,
we have the PLKL method to provide a trenchant Policy Library for
the next learning tasks, with more theoretical basis than previous
algorithms. Compared with the relevant methods, our methods have
the top performance in all the experiments designed in the navigation
domain.

For future work, a major improvement direction is to automati-
cally generate parameters. Another direction is that how the selection

method can decide which part of policy to reuse for more efficient
policy transfer. Furthermore, we will extend our framework to deep
RL domain. In the directions of the above improvement, we will also
tests our method in other domains and applies in practical problems.
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