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ABSTRACT

The iterated prisoner’s dilemma (IPD) is a test bed for adaptation
and cooperation. Computational experiments are regularly used for
studying the competition of IPD strategies in multi-agent settings.
This experimental work rarely links their results to game theoret-
ical results with the potential to enlighten the analysis and the
questions being asked. Here we focus on simulated evolution and
results from Evolutionary Game Theory (EGT) and the IPD. The
theory implies that all Nash equilibria can be upset by a sequence
of mutants. If strategies are not restricted, populations of agents
should move between Nash equilibria with different levels of coop-
eration. We argue this instability is inescapable, regardless of how
strategies are represented. We present algorithms that show that
simulated evolution perfectly aligns with EGT predictions. This
implies that cognition itself may only have limited impact on the
cycling dynamics of cooperation and defection. We argue that the
role of mutations or exploration is more important in determining
levels of cooperation.

1 INTRODUCTION

Humans are an exceptionally cooperative species, and this capacity
for coordination and cooperation is an essential part of what makes
us intelligent [11]. It is therefore not surprising that research in
artificial intelligence has taken an interest in understanding how
to promote and maintain cooperation in groups of self-interested
agents [4, 13].

Cooperation means paying a cost in order to help somebody else.
This implies selfish agents have no incentive to behave coopera-
tively, in spite of everyone being better off in cooperative groups.
This tension between individuals and groups is best captured by
the prisoner’s dilemma (PD) [12].

In the simplest version of the PD, two players are given the
option to cooperate or defect. Cooperators pay a cost c to bestow
a benefit b on the opponent. Defectors pay no cost and provide
no help, but may still benefit from others cooperating with them.
The dilemma arises because, given b > ¢ > 0, defection is the only
dominant strategy but not Pareto optimal.

One way out of this dilemma is to allow players to interact
repeatedly, thereby providing them with the chance to reciprocate
cooperative acts. Thus, a strategy is a map from histories of the
game to actions. The most well-known strategy is “Tit-for-Tat”
(TFT), which cooperates on the first round and repeats the previous
move of its opponent thereafter. The simplest strategies are ALLC,
always cooperate; and ALLD, always defect. While many strategies

Matthijs van Veelen
Department of Economics
Universiteit van Amsterdam
Amsterdam, The Netherlands
c.m.vanveelen@uva.nl

can be named and described, the total number of strategies in the
game is uncountably infinite [6].

The game is most interesting when players are uncertain about
the number of rounds or repetitions. This is often captured with
a continuation probability §. For large &, repeated interactions
can lead to cooperative equilibria, but strategies that do not coop-
erate can also be strategically stable — this is known as the folk
theorem[5].

With infinite possibilities for equilibria, a natural question is
whether (or when) some equilibria are more stable than others. A
reasonable answer relies on a learning, or evolutionary process to
try to answer this question. While TFT and ALLD are both equilibria,
if a learning or adaptive process spends more time in TFT that is
good news for cooperation.

EGT assumes the competition of strategies in a large population,
where strategies that do well reproduce more or faster. A strategy is
said to be Evolutionarily Stable (ESS) if no mutant in small quantities
can invade. Likewise, a Neutrally Stable Strategy (NSS) is able to
perform at least as good as — but not necessarily strictly better than
- any mutant arising in small enough quantities [9]. ESS and NSS are
sometimes able to single out equilibria, but they are unfortunately
inconclusive in the IPD, which has no ESS and infinitely many NSS’s
[3]. In [6] we show that no NSS is more stable than others, and an
evolving population should see cycles of defection and cooperation,
with neutral mutants being the catalysts for these transitions, in
what is known as indirect invasions [14]. This is shown without
restricting the strategy space.

2 SUMMARY OF RESULTS

How does the game theory of the IPD relate to computational ex-
periments? Here we summarise the results in [7], where we show
that in the case of simulated evolution these results are perfectly
aligned when considering a rich strategy set, and large but finite
populations. We perform an evolutionary simulation with unre-
stricted finite state automata, similar to some others found in the
literature (e.g., [2, 8, 10]). We present a method to analyse the results
of computational experiments. This methodology involves:

o Addressing the noise inherent to the simulations.

e Verifying that prevalent strategies are Nash equilibria — we
present an efficient algorithm to perform this verification.

o Counting indirect invasions via neutral mutants, accounting
for identical strategies whose representation is different.

As expected in theory we observe cycles of cooperation and
defection (1). This is a prevalent feature of many simulations, but
we are also able to show that the reason behind the cycles is the
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Figure 1: Typical cycles of cooperation and defection.
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Figure 2: Prevalence of Nash equilibria.

prevalence of indirect invasions. We find that indirect invasions
account for the vast majority of transitions between different levels
of cooperation, specially when the population is large. This kind
of transition dominates the dynamics, taking the population from
one Nash equilibria to another (2), with varying different levels of
cooperation.

Our work also shows that computational experiments are com-
patible with game theory analysis. Theory can in fact, facilitate
meaningful data analysis of simulation results, but simulations can
also help us push game theory forward. Our view is that more at-
tention should be paid to how representations and exploration may
affect cooperation. While cycles are unavoidable in repeated games,

different exploration schemes—and strategy representations—may
lead to more or less cooperation.

Our analysis shows that cycles are the norm when using the
most general space of deterministic strategies. This implies that
cognition itself may have minimal impact in changing the dynamics.
The collapse of cooperation cannot be avoided with evolutionary
learning, regardless of how sophisticated strategies are. Research
should therefore focus on understanding the process of strategy
exploration and implementation. Recent work in reinforcement
learning may be a fruitful avenue to explore in population games
[1,4].
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