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ABSTRACT

Many real-world domains can benefit from adaptable decentralized
task allocation through emergent specialization, especially in large
teams of agents. We begin with an existing bio-inspired response
threshold reinforcement approach for decentralized task allocation
and extend it to handle hierarchical task domains. We test the ex-
tension on self-deployment of a large team of non-communicating
agents to patrolling a hierarchically-defined set of areas. Results
show near-ideal performance across all areas, while minimizing
wasteful task switching through the development of specializations
and subsequent respecializations when area demands change.
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1 INTRODUCTION

We investigate decentralized task allocation for dynamic domains
with non-communicating workers who are neither limited nor
informed by the actions of others or by task availability. An existing
dynamic task allocation approach is adapted for a hierarchically-
defined patrolling domain, consisting of multiple areas patrolled
by 1000 agents. We assess whether the expected number of agents
are present in each area over time, the stability of agents’ self-
assignments when area demands remain stable, and the adaptability
of these self-assignments when area demands change.

We focus on decentralized emergent cooperation among agents
whose task choices are neither limited nor informed by the choices
of the other agents. Many real world domains involve ubiquitously
available tasks which can be taken up by any number of agents at
any time, though the actual task demands may vary. We refer to
these as ongoing tasks. Examples include patrolling, monitoring,
equipment diagnostics and maintenance, gathering resources, etc.
Existing patrolling studies often ignore a need for flexible and
scalable task allocation, neglect considerations of communication
and load balancing, and focus on deterministic and centralized
approaches [32] which usually rely on some form of task availability
limitations (e.g. only one agent can win a task auction). Ongoing
tasks without task supply limits are seldom discussed in existing
task allocation literature.

StimHab, commonly referred to as response threshold with rein-
forcement [36]1, is a probabilistic biologically-inspired decentral-
ized approach which has been previously applied to ongoing task

1Other approaches exist where agents respond based on adapted thresholds, such as
when agents act deterministically when a stimulus exceeds an agent’s threshold [21]. To
avoid ambiguity, we uniquely refer to the model defined in [36] as StimHab, referencing
its use of stimuli and habituation thresholds to calculate agents’ action probabilities.
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Fig. 1: Hierarchical Patrolling Domain

Nested areas T1-T5 and their sub-areas have patrolling demands
(shown as percentages of total work-hours available per step) that
change over time. Non-communicating agents self-allocate to the
areas based on the areas’ stimuli and agents’ own evolving
habituation thresholds for each area. If a chosen area has sub-areas
(shown in light gray), selection repeats among its sub-areas.

allocation [18, 36, 40]. Biologically-inspired techniques for emer-
gent task allocation show comparatively high scalability, adapt-
ability, and resource utilization, as well as low complexity and
communication requirements [41]. Decentralized multiagent ap-
proaches offer increased robustness and scalability, as they are not
dependent on the availability of a central element [2, 37]. StimHab
employs task stimuli and action-reinforced task habituation thresh-
olds to calculate agents’ action probabilities, which increase for
tasks with higher stimuli and lower habituation thresholds [36].
StimHab agents do not communicate, nor are they aware of each
other’s capabilities, preferences, circumstances, or even existence,
making the approach highly scalable. Agents sense current task
stimuli, which change over time based on the system’s performance
on each task. Agents also maintain individual adaptable habituation
thresholds, indicating their preferences for each task. An agent’s
probability to act on a task increases with given a higher stimulus
and a lower habituation threshold. An agent increases its threshold
for the chosen task and increases its thresholds for the other tasks,
becoming more likely to repeatedly select the same action, leading
to emergent specialization over time. Here, specialization refers to
an agent’s preference and the resulting increased propensity to act
on some task over the alternatives. Emergent cooperation among
decentralized agents is characterized by adaptable behavior, benefi-
cial to dynamic applications, such as patrolling [2, 32]. Specialized
agents lead to decreased interference and task switching, as well as
to increased performance [1, 4, 16, 20, 26, 27, 31, 34].

Within StimHab, the basis of agents’ habituation thresholds and
current system needs are domain-specific. In addition to action-
reinforced habituation, agents’ thresholds can reflect experience,



current circumstances, or physical suitability. Task demands are
unknown to the agents and system needs are inferred from perfor-
mance levels on each task (see section 4 for details). Performance
can be relayed to the agents by surveillance cameras, via a central
informer transmitting global state of performance, or even through
agents individually observing storage levels, lengths of request or
production queues, counts of encounters of each task type, etc. As
the cost of monitoring performance is less affected (if at all) by in-
creasing numbers of agents, StimHab scales better than approaches
relying on explicit agent coordination.

In this work, we further test the capabilities of StimHab by ex-
tending it to handle hierarchical sets of ongoing tasks by a team
of 1000 agents, without relying on any additional methods of co-
ordination. StimHab is applied to a high-level patrolling domain
composed of nested areas, each with dynamic patrolling demands.
We assess (1) the performance for each area over time, measured by
how closely agents match the established area deployment require-
ments; (2) how well are the agents able to specialize, as measured
by the amount of area switches (i.e. task switches) over time, and
(3) how well agents reallocate when area-demands change. Our
tests show that StimHab allows agents to self-allocate proportion-
ately, while promoting specialization and maintaining adaptability.
Additional tests show that task allocation stability can be improved
by small changes to the relation between stimulus and habituation.

2 RELATED WORK

There is little research on ongoing tasks allocation with no communi-
cation. Below we review some existing approaches to decentralized
task allocation and discuss their applicability to ongoing tasks.
Task allocation often relies on task supply limitations and infor-
mation about the choices of others. Discrete tasks are commonly
presented one at a time (e.g. bidding on truck-painting jobs [7]).
When multiple tasks are available in unlimited quantities, agents
must decide which task is needed more and for which is the agent
better suited. Not having to recruit or confer with others can allow
for faster responses to system changes, as well as for improved scal-
ability, but having no communication nor limits on task availability
does preclude the use of approaches employing auctions [24, 30, 42],
token-passing [12, 22], or inter-agent recruitment [9-11, 39].
Ongoing task allocation without supply limitations has been
addressed by probabilistic state transitions and by StimHab. For
proportionate agent deployment to multiple locations (e.g. multi-
area surveillance), locations/tasks can be assigned probabilities for
agents to transition from one task to another [3, 14, 15]. Relying
on global transition-probabilities does not promote specialization,
while the need for explicitly defined transition values complicates
adaptability in dynamic environments. StimHab can address gen-
eralized task allocation with no communication for a linear set of
ongoing tasks, promoting specialization to reduce wasteful task
switching [40]. StimHab may struggle during respecialization in dy-
namic domains, but performance can be improved by strategically
resetting agent specializations [18]. While many other applications
of StimHab exist, they commonly rely on limited task supply, having
agents compete for each “job” (e.g. RoboCup Rescue [8], factory job
assignments [5, 7, 13, 28, 29]; threshold dependent competition [25];

and token-passing for UAV surveillance [35]). To our knowledge,
ongoing hierarchical tasks are not addressed in the literature.

3 DOMAIN: HIERARCHICAL DEPLOYMENT

We apply StimHab to a high-level patrolling domain, with multiple
hierarchically-defined areas to be patrolled by a large group of non-
communicating agents. Below we discuss why hierarchical task
definitions are interesting and how patrolling fits multiagent task
allocation for hierarchically-defined ongoing tasks.

A hierarchical domain can be seen as a layered version of mul-
tiple sets of linear tasks, to which StimHab has been successfully
applied [18]. This layering groups tasks under parent tasks, where
the amount of work needed for the parent equals the sum of the
amounts of work needed by the siblings; i.e. if insufficient agents
allocate themselves to a parent task, then there will be insufficient
allocations for its children tasks. Thus, choosing among parent
tasks obscures the individual needs of the children tasks, which
could hinder the agents’ ability to task allocate effectively. How-
ever, selecting among all the tasks in a flattened domain does not
scale well to domains with many tasks. When selection is layered,
large sets of tasks can be eliminated by deciding against a single
parent task, resulting in better scaling. Additionally, a hierarchical
task breakdown into sub-domains allows agents to self-allocate at
higher levels, while lower levels can employ alternative task alloca-
tion methods, potentially better suited for these sub-domains. For
example, while explicit scheduling may be prohibitive in very large
systems as a whole, it may be the optimal choice for smaller sets
of tasks that require more precise task allocation or more explicit
cooperation. Hierarchically-defined StimHab would allow a subset
of agents to individually self-allocate to the sub-domain of interest,
and then switch to an alternative multiagent control method. Even
if StimHab is used at all levels, other parameters can be varied per
level, such as how often agents reconsider their current task choice,
given that different sub-domains may be more or less dynamic,
have higher or lower task switching costs, etc. A final benefit of hi-
erarchical domain definition is that it can allow for a more intuitive
domain breakdown, potentially simplifying system design.

Multi-area patrolling fits multiagent allocation for ongoing tasks:
multiple locations in constant need of patrolling, a natural hierar-
chical breakdown of the overall space to be patrolled, patrolling
demands per area that vary over time, and performance that ben-
efits from each agent specializing on any one area. Decentralized
approaches to patrolling usually involve some form of communica-
tion among the agents. Patrolling approaches that rely solely on
marking patrolling frequency, such as using a pheromone diffusion
model [6], do not promote specialization, which has been shown to
be beneficial for patrolling [1]. Hierarchical patrolling represents
an intuitive breakdown of a large area to be patrolled (e.g. a school
campus subdivided into quadrants, each quadrant with multiple
buildings, each building with multiple floors). Each sub-area rep-
resents a subtask of the larger area (or task) that encompasses it.
Specializing on patrolling a single area diminishes the time agents
spend traveling between areas, thus increasing patrolling efficiency.

To minimize the dependence of our results on domain-specific
area adjacency and traveling costs, we model patrollable areas as an
abstract set of ongoing tasks. Patrolling performance then depends



on whether agents self-deploy proportionately to demands, using
stimuli for indirect coordination. The patrolling performance of
each area can be defined as the ratio of [current patrolling units
in the area] to [the desired patrolling units in the area], where the
desired number can depend on expected targets within the area,
scheduled events, etc. The actual performance calculations is highly
domain specific, but for physical areas it can be setup as counters
of patrolling units vs. targets entering and exiting an area. Agents
need no direct awareness of where the other agents are currently
patrolling, only whether an area is currently sufficiently patrolled.

4 PROBABILISTIC ACTION USING STIMHAB

We propose an extension for an existing biologically-inspired ap-
proach for decentralized task allocation [36], which we term StimHab
(for brevity and to distinguish it from other threshold-response

methods). First, we review how stimuli and habituation thresholds

are defined, updated, and used within StimHab to calculate the

agents’ action probabilities, as well as how the resulting actions

lead to agents’ specializations. We then propose the changes needed

to extend StimHab’s applicability to hierarchical task domains.

4.1 Global Task Stimuli

Agents perceive system needs through globally observable stimuli
(e.g. dimensions of a fire to be put out [17] or task performance [18])
and use them as a fitness measure for decentralized coordination.
StimHab stimuli do not directly indicate task demands, instead
being a sort of gas pedal to incite agents to act more or less on a
given task. Knowing the total number or ratio of agents needed by
a task per some time unit does not help an agent decide whether to
take on that task. Instead, agents can decide whether their services
are needed based on how well the task is being handled, i.e. task
performance. Using inverse performance values directly as stimuli,
however, results in an environment that is too unstable for special-
ization. No activity on a task corresponds to maximal stimulus (1.0),
while the correct amount of activity corresponds minimal stimulus
(0.0). Achieving the correct work distribution leads to no stimulus,
a sharp drop in activity, and a subsequent drop in performance,
leading to an increasing stimulus, an increase in activity back to
previous levels, leading to zero stimulus again, etc. This oscillating
stimulus precludes agents from stabilizing their task assignments.
Under StimHab, task performance is used to update stimuli.
Ideal 100% performance corresponds to having the exact number of
agents on a task to match the task’s demand, leading to no change
in stimulus and allowing agents to continue acting as they are. Ex-
cess work decreases stimulus, thus decreasing activity on the task;
insufficient work increases stimulus, thus increasing activity. Task
t’s stimulus s; is updated based on a per-step expenditure (i.e. show
much stimuli increase in absence of agent action) and the team’s
per-step performance (i.e. ratio of achieved work to needed work):
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up to a min(s;) = 0.0 and max(s;) = 1.0. If agents perform sufficient
work to offset the per-step expenditure, s; stops changing, indicat-
ing that agents are doing exactly enough work to match the task’s
demand. Expenditure As; increases the task’s stimulus from mini-
mum 0.0 to maximum 1.0 within a single cycle, defined as some num-
ber of consecutive decision steps. After each step, given no agent
work on task t, s; increases by 1.0/(number of steps in cycle).

4.2 Individual Task Habituation Thresholds

Each agent maintains its own habituation threshold for every task.
These are often referred to as “response thresholds”, which can
be misleading when agents do not respond based solely on these
thresholds. Thus, we place focus on the fact that these thresholds
represent how habituated an agent is toward performing each task.

When agent a acts on a task ¢, its threshold for that task 6, ; is
reduced, while thresholds for the other tasks are increased. Lower
thresholds increase action probability (see section 4.3), causing
agents to become more likely to act on the same task in the future,
leading to specialization over time. As agent a repeatedly acts on
task t, 04, tends to 0.0, while all other 6, -+, tend to 1.0 according
to the following threshold reinforcement rules:

ea,t = ea,t - §
Oa,r4t = Oap + ¢

(where ¢ is the affinity rate)

(where ¢ is the aversion rate),

with 6 restricted to the range [0.0, 1.0]. Affinity and aversion rates
dictate how fast agents habituate based on their actions.

4.3 Action Selection

StimHab achieves task allocation through probabilistic actions
based on global task stimuli and agents’ individual habituations [36].
An increase in a task’s stimulus indicates that more work is needed
on that task, while a lower agent’s task threshold indicates that
agent has developed an affinity for this task, inciting it to act at
lower stimuli than agents with higher thresholds for that task.

Every time step, each agent a calculates the probability P, ; to
act on every task t, by combining the task’s stimulus s; with its
own affinity for that task 6, ;:

where s €[0.0,1.0],6€[0.0,1.0]
where undefined (s; = 6, ; = 0.0)

Pa,t = si/(s? +02,)
Pat =05

The redefinition at s; =6, ; =0 avoids division by zero, while lead-
ing to a 50%/50% chance to select the task or not, which falls pre-
cisely between the adjacent values P, ; = 1.0 for (s; > 0.0,0,,; =
0.0) and P, ; = 0.0 for (s; = 0.0, 84, > 0.0), while also matching
the values along the rest of the diagonal where s; = 0, ;, as every
[s¢ = 0q,¢] > 0.0 results in Py ; = (s?/(s? + s?) =0.5.

Having multiple ongoing tasks available at every step, agents
must choose whether to act on any one of them. In prior work,
we extend StimHab to allow agents to choose among multiple
tasks [40], as the original definition presents agents with one task
at a time [36]. Agents consider tasks in descending order of Py ¢,
which promotes proportionate task allocation and specialization.
The resulting order may differ across agents, as agents calculate
Pg,+ using their own thresholds. When considering each task, if a
random value € [0.0, 1.0] is below P, ;, the agent acts on that task.



Otherwise, the task with the next highest P, ; is considered. If no
task triggers action, the agent idles until the next time step.

4.4 Hierarchical Task Assignment

We extend StimHab to hierarchical domains composed of tasks and
subtasks. To this end, task selection and the reinforcement of task
habituation thresholds both require newly recursive definitions.

Agents will choose from among a subset of tasks at each level,
recursively diving deeper in the hierarchy until selecting a task with
no subtasks, or defaulting to idle. Under StimHab with a linearly
defined set of tasks, once an action is selected, the agent can act.
For a hierarchical set of tasks, a chosen task must then be checked
for subtasks: if the task has subtasks, the agent will repeat the task
selection process, this time choosing among the subtasks of the
originally selected task; if the task has no subtasks, the agent will act
on the chosen task. At any level of the hierarchy, if the probabilities
Pg,; for the tasks under consideration do not trigger any one task
to be selected, the agent will idle. Thus, action selection always
ends at a “leaf” task (either an actual task or at idling, which is a
type of “leaf” task implicitly available at every level).

Selecting a task must trigger habituation threshold updates for
that task and its sibling tasks, i.e. we are choosing to specialize
on that task and against the alternatives. Under StimHab with a
linearly defined set of tasks, acting on a task causes its threshold
to reduce, while the thresholds for all other tasks increase. For a
hierarchical set of tasks, only the tasks at the same level as the
chosen task (i.e. sibling tasks) will have their thresholds increased.
Additionally, since choosing a task means its parent task (if any)
was also chosen along the path down the hierarchy, updates must
then propagate upward. This means the parent task’s threshold will
also be reduced, while the thresholds of the parent task’s siblings
will be increased; the update will then be moved further up to the
grandparent task and so on until the top level is reached.

5 EXPERIMENTAL SETUP

To verify the benefits of StimHab for decentralized allocation with
specialization, we compare agents behavior under StimHab to that
resulting from a direct averaging of the two signals for our objec-
tives, i.e. stimuli and habituation thresholds. While agents could be
made to follow stimulus or thresholds alone, neither would achieve
the dual aim of maximizing performance while minimizing task
switching. Below we present the specifics of the tested approaches,
the hierarchical set of tasks used, and the actual demand values
used for the different tasks throughout the simulations.

We test two approaches that combine stimuli and habituations
to maximize performance and minimize task switching: StimHab
(adapted to hierarchical domains) and Average(s, 0). Average(s, 0)
uses the same definitions of stimuli and thresholds, while its prob-
ability to act is the average of the two values, accounting for the
inverse relationship of thresholds and action probability:

2
Average(s,0) Py ;= w vs. StimHab P, ; = zs—tz
’ o si+0; .
where a is the agent, t is the task, s; is the task’s stimulus, and 0,
is the agent’s habituation threshold for task a. For both approaches,
all s; are initialized to 0.0 and all 8, ; are initialized to uniformly
random values € [0.0, 1.0].

We test two versions of each approach: one with resets of thresh-
olds back to uniformly random values when demands change and
one without resets, requiring agents to respecialize from the previ-
ously developed specializations 6, ;. Adaptability of decentralized
solutions often depends on population diversity, which can be lost
after the initial adaptation, complicating re-adaptation [18, 23, 33].
Partial or full resets of conditioning can be used to improve per-
formance: forgetting older observations in adversarial decision
making [38], forgetting older training environments in Case-Based
Reasoning robotic navigation [19], and resetting habituations in
a task allocation using StimHab [18]. Consequently, we test four
approaches: StimHab with threshold resets, StimHab without resets,
Average(s, 0) with resets, and Average(s, §) without resets.

Our patrolling scenario has 12 hierarchically arranged areas, i.e.
12 tasks (see hierarchy in figure 1). Agents are not directly aware of
task demands, instead sensing globally monitored task performance
values. Performance on task t is the ratio between [work achieved]
and [work needed], i.e. how many agents worked on this task during
this step vs. how many agents we needed to work on this task. Ideal
behavior corresponds to continuously having the correct number
of agents working on each task. To establish an optimal baseline,
we ensure that demands at each level in the hierarchy always add
up to 100% of the available agents (i.e. demands for T1-T5 always
add up to 100% of agents; if demand for T2=x%, demands for its
subtasks T2.1, T2.2, T2.3 add up to x%). Thus, any misallocation will
cause some tasks to fall below 100% performance. The team consists
of 1000 non-communicating, homogeneous agents with uniformly
random initial habituation thresholds € [0.0, 1.0]. Each simulation
run lasts for 500 cycles, i.e. 50000 steps. Patrolling demands change
every 50 cycles (5000 steps or task-choosing decisions by each
agent), for a total of 10 times per simulation.

CYCLE T1 T2 T21 T22 T23 T3 T4 T4l T42 T421 T422 T5

0-49 4% 20% 4% 8% 8% 32% 20% 4% 16% 8% 8% 24%
50-99 4% 16% 8% 4% 4% 24% 32% 8% 24% 12% 12% 24%
100-149 16% 40% 4% 20% 16% 4% 12% 4% 8% 4% 4%  28%
150-199 24% 12% 4% 4% 4% 28% 16% 4% 12% 4% 8% 20%
200-249 4% 32% 12% 8% 12% 16% 36% 12% 24% 8% 16% 12%
250-299 36% 16% 4% 4% 8% 4% 20% 8% 12% 4% 8% 24%
300-349 16% 16% 4% 4% 8% 8% 12% 4% 8% 4% 4%  48%
350-399 56% 12% 4% 4% 4% 4% 20% 12% 8% 4% 4% 8%
400-449 12% 16% 8% 4% 4% 4% 52% 36% 16% 12% 4% 16%
450-499 32% 24% 8% 12% 4% 20% 12% 4% 8% 4% 4% 12%

Table 1: Patrolling demands per area and simulation period
Demands change every 50 cycles, i.e. 10 times over a 500-cycle
simulation. For example, on cycle 100, the domain changes from
needing 4% of all patrolling to be on area T1 to needing 16%.
T2 changes from 16% to 40%: 4% on T2.1, 20% on T2.2, 15% on T3.3.

6 RESULTS AND DISCUSSION

Initially, we compare StimHab to a direct averaging of the stimulus
and habituations. Results show that agents can approach the ex-
pected task allocation at the cycle level, but oscillations are observed
at the step level after an initial adaptation period. These findings
lead to an additional set of tests, considering an alternative version
of StimHab, StimHabAlt, intended to help agents respecialize as
conditions change. Below we provide the two sets of comparisons:
(1) StimHab vs. Average(s, 0) and (2) StimHab vs. StimHabAlt.



6.1 StimHab vs Average(s, 0)

To assess the ability of a decentralized team to self-allocated to a set
of ongoing hierarchically-defined tasks, we compare the abilities of
StimHab and Average(s, §) approaches to deploy agents to a set of
areas with dynamic patrolling demands. We look at task allocation
over sample runs to clearly observe the behavior, then at average
runs to assess the stability of the observed behavior. We compare
the approaches’ ability to provide the expected number of agents to
each area as demand change, as well as to allow for specialization
by reducing the amount of task switching over time.

Figures 2-5 depict per-area performances for each cycle of a 500-
cycle representative sample run. The x-axis shows cycles and the
y-axis shows performance, = (work achieved;  work needed;). Each
line represents performance for an area. Ideal task allocation corre-
sponds to 100% performance in every area, as we do not want too
many nor too few agents allocated to an area. Patrolling demands
for each area change every 50 cycles, causing spiking from 100% per-
formance. Under StimHab with resets (fig. 3) and Average(s, 6) with
resets (fig. 5) performances approach 100% performances faster
than their versions without resets, corroborating prior research
that indicates that threshold reinforcement is more effective start-
ing from random thresholds (i.e. specialization) than starting from
previously reinforced thresholds (i.e. respecialization) [18].

Figures 6-9 show an averaged view of the same sample runs. The
x-axis represents an average n-th cycle of every 50 cycles and the
y-axis displays the average percentage deviation from the desired
allocation. Deviations are used in place of performance values to
ensure that values above and below 100% performance do not cancel
out: deviation; = [100 — performance,|. Thus, ideal performance
corresponds to 0% deviation. We see that StimHab with resets (fig. 7)
and Average(s, ) with resets (fig. 9) both reach near 0% deviation
for all areas over time, while for versions without resets some areas
remain at as high as 25% (fig. 6) and 20% (fig. 8) deviation.

Figure 10 plots the task switches for each of the four approaches,
averaged over the ten changes in demands. The x-axis depicts the
average n-th cycle of a 50-cycle period (i.e. between changes in
patrolling demands) and the y-axis shows the average number of
times agents switch tasks during that cycle. Given 1000 agents and
100-steps per cycle, a maximum number of switches per cycle is
100000. We see here that, although StimHab and Average(s, 0) (both
with resetting) had similar ability to fulfill average patrolling de-
mands, StimHab with resetting is able to reduce task switches to
approximately 2000 per cycle, amounting to 2 switches per agent
per 100 task choosing decisions (one decision per step, thus 100
per cycle). StimHab without resetting comes in second, only reduc-
ing task switching to approximately 18000 times per cycle, while
Average(s, §) with and without resetting result in twice as much
task switching. Thus, we see that StimHab greatly reduces task
switching, though never quite eliminates it.

To further investigate the causes and repercussions of these task
switches, we graph task allocation performance at each step of a
representative sample run for the approaches with lowest overall
task switching: StimHab with resets in fig. 11 and Average(s, 8) with
resets in fig. 12. To ensure visibility, only the first 5000 steps (of the
total 50000) are shown, but the discussed behavior repeats itself
every 5000 steps. We see that although task allocations averaged

for each cycle were nearing the ideal 100%, at the step level there
is considerable oscillation in both approaches. It is nevertheless
clear that while Average(s, ) performance oscillates continuously
throughout the entire 5000-step period (notice the dense spiking
in fig. 12), StimHab performance (fig. 11) initially approaches the
desired task allocation and then begins to oscillate. The spikes here
are sparser than under Average(s, 0), but have higher amplitude,
indicating intermittent large shifts in agent assignment.

Looking closer at the simulation data, we see that StimHab’s
performance begins to oscillate once tasks with too many agents
(performance line above 100%) reach s; = 0. By this point, agents
have strongly developed habituations (6,4,; = 1.0 one of the tasks),
causing P, ; to drop from 1.0 to 0.5, and leading to a decrease of
activity on that task and an increase on the others. A sharp decrease
in activity brings s; down, restarting the cycle. This oscillation
hinders fine-tuning hierarchical specializations and is precisely
why resetting is beneficial for threshold adaptation: fully habituated
agents have trouble choosing what is needed over what they now
prefer [18]. We hypothesize that respecialization can be improved
by altering probability calculation in favor of tasks where s; = 1.0.

6.2 StimHabAlt: altering StimHab behavior
near the point (s;=1.0, 04, =1.0)
To facilitate respecialization, the probability formula can be adjusted
to favor (s = 1.0, 04,; = 1.0), i.e. to favor the task that agents have
habituated against, but which has now reached maximum stimulus
due to continuous insufficient activity. Below we present our initial
investigation of altering StimHab P, ; to improve agents’ ability
to find proportionate and stable task assignments. StimHab with
resets is compared against StimHabAlt with and without resets.
As a preliminary test of this hypothesis, we update StimHab’s
Pg,+ formula. To favor under-performing tasks without disturbing
the system’s ability to specialize, we test a slight increase of P, ¢
at [s; = 04,¢] = 1.0. We balance this increase by a simultaneous
decrease in activity for intermediate stimuli, to maintain a similar
overall distribution of possible P, ;. In depth analysis is needed to
establish a principled definition of the weights and powers to be
employed. For this initial test, we select values that approximate
the hypothesized distribution of P, ; needed to favor highly under-
performing tasks, namely: a weight of 60% for s and 40% for 6, ;,

as well as a power of 3 for s and of 2 for . We term the resulting

0.6s)°
probability formulation as StimHabAlt: P, ; = W

Probability values for StimHab and StimHabAlt are shown in
fig. 14a and fig. 14b, respectively. We hypothesize that this alter-
ation will not only reduce oscillations at the step-level, but may
also help agents respecialize when demands change even if their
specializations are not reset to random values beforehand.

Figures 15 and 16 depict per-area performances for representative
sample runs of StimHabAlt without and with threshold resetting,
respectively. Although resetting still proves beneficial as seen from
reduced spiking in fig. 16, both methods approach 100% after each
time demands are reset (every 50-th cycle), indicating an ability to
respecialize, which supports our hypothesis of the benefit of the
altered P, ; mapping in StimHabAlt. Figures 17 and 18 show aver-
age adaptation behavior over an average 50-cycle period, further
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Methods with threshold resetting result in fewer task switches.
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supporting that StimHabAlt does not require threshold resetting
to allow for respecialization. Both versions of StimHabAlt produce
task performances comparable to StimHab with resetting (fig. 3,7).

As StimHab with resetting and StimHabAlt with and without
resetting result in similar task performances, in fig. 19 we compare
their average task switching and find that all three are similarly able
to reduce task switching over time, indicating agents’ ability to spe-
cialize. To further analyze StimHabAlt, we assess its performance
per step. Fig. 13 depicts performance for the first 5000 steps of a
representative sample run, though the observed behavior repeats
every 5000 steps, with small variations. We see that the number
and amplitude of performance oscillations are reduced as compared
to StimHab (fig. 11), though not fully eliminated.
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Numbered lines correspond to performance on each patrollable area, with 100% being ideal.
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Fig. 14: All possible probability values
In StimHab (a), minimally needed tasks with high habituation
(s=60=0) and maximally needed tasks with low habituation
(s=60=1) both result in P, ; =0.5, hindering respecialization. We

(b) StimHab-Alt: P =

propose favoring (s =6 =1) by shifting P, ; values, as shown in (b).

Behavioral stability is verified through 50 runs of StimHab with
resets and StimHabAlt with resets. Average performance deviations
and 95% confidence intervals are shown in fig. 20; average task
switching is shown in fig. 21. StimHabAlt has slightly lower devi-
ations and task switch counts, with considerably higher stability,
seen in narrower shaded confidence intervals. Results suggest that
while StimHab can produce proportionate decentralized allocation
for hierarchical tasks with changing demands, task assignment sta-
bility can be improved further by altering the probabilistic relation
between task stimuli and agents’ habituation thresholds.

6.3 Conclusions and Future Work

We apply biologically-inspired decentralized task allocation [36]
(StimHab) to a dynamic hierarchically-defined patrolling domain.
Agents self-allocate proportionately to the dynamic patrolling needs
of a set of nested areas using stimuli as a fitness measure for co-
ordination. After initial adaptation, task switching in the system
reduces to about 2% of the actions at every step, indicating highly
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specialized behavior, which has been proven beneficial in many
multiagent domains. A team of 1000 agents self-allocate effectively
without communicating, demonstrating StimHab’s scalability. The
applicability of the resulting task allocation and specialization ex-
tend to decentralized dynamic domains, hierarchical or not, that
have continuous tasks available in unlimited quantities (e.g. re-
source gathering, maintenance, demand-based production...), many
agents, and no inter-agent communication, potentially impossible
or undesirable in some domains. We present some initial testing
of potential parameter changes to further increase the stability of
agents’ task assignments and to improve overall performance.
Scheduling and communication-based approaches do not always
scale well to many agents and dynamic environments. As agents are
not directly adapting to changes in demand, but rather to changes
in performance, the approach is suitable for a variety of dynamic
environments, such as those with agent failure/replacement, or with
environmental variations that can change how work translates into
performance. Additionally, StimHab can be used to reduce overall
micromanagement in dynamic multiagent systems. Agents’ ability
to self-allocate to hierarchical tasks allows StimHab to direct large
groups of agents toward sub-domains, where the newly formed
subgroups can subdivide further using StimHab, or switch to a more
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Fig. 21: 50-run task switching average:
StimHab with resets vs. StimHabAlt with resets

controlled but less scalable approach, such as scheduling, auctions,
or graph algorithms [2, 32], depending on subdomain specifics.
Future work includes a more in-depth assessment of the reper-
cussions of the weight and power parameters in the StimHab prob-
ability formula. Other extensions include explicitly asynchronous
agent actions resulting in asymmetrical information, imperfect
stimulus information, subsets of agents with unvarying thresholds
(i.e. preset capabilities), and mapping the hierarchical domain to a
graph topology to evaluate the behavior on actual physical layouts.
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