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ABSTRACT

We introduce and study a multiplayer version of the classical Ul-
timatum Game in which a group of N Proposers jointly offers a
division of resources to a group of M Responders. In general, the
proposal is rejected if the (average) proposed offer is lower than the
(average) response threshold in the Responders group. A motivation
for our work is the exchange of flexibilities between different smart
energy communities, where the surplus of one community can be
offered to meet the demand of a second community. We find that,
in the absence of any mechanism, the co-evolving populations of
Proposers and Responders converge to a state in which proposals
and acceptance thresholds are low, as predicted by the rational
choice theory. This is more evident if the Proposers’ groups are
larger (i.e., large N). Low proposals imply an unfair exchange that
highly favors the Proposers. To circumvent this drawback, we test
different committee selection rules which determine how Respon-
ders should be selected to form decision-making groups, contingent
on their declared acceptance thresholds. We find that selecting the
lowest-demanding Responders maintains unfairness. However, less
trivially, selecting the highest-demanding individuals also fails to
resolve this imbalance and yields a worse outcome for all due to a
high fraction of rejected proposals. Selecting moderate Responders
optimizes overall fitness. This result provides a practical message
for institutional design and the model proposed allows testing poli-
cies and emergent behaviors on the intersection between social
choice theory, committee selection and fairness elicitation.

1 INTRODUCTION

Many social dilemmas in society can be formulated and studied
using game theoretic methods [8]. In particular, the question how
cooperation can come about in a society of self-interested indi-
viduals has attracted considerable interest in the research commu-
nity [1, 12, 15, 19, 20]. Typically such social dilemmas are cast as a
normal form game, in which a set of players simultaneously and
without prior communication choose an action to play, and the
resulting joint action determines the payoff to each player. Despite
the simplicity of these one-shot interactions, normal form games
can still capture many of the intricate dynamics of complex strategic
interactions [1, 25].

One example of such a game is the Ultimatum Game (UG) [10],
in which one player, the Proposer, offers a certain split of a re-
source to a Responder, who decides to either accept or reject the
offer.! If accepted, the players receive their share per the offer; if

! Although the Ultimatum Game is usually formulated as a sequential game, it can be
cast as an identical normal form game in which the Responder decides on her response
to any possible proposal in advance.
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rejected both players receive nothing. Here, we propose and study
a Multiplayer version of the classical Ultimatum Game, in which
a group of N Proposers jointly offers a division of resources to a
group of M Responders. Henceforth we refer to this interaction
as (NxM)-person Multiplayer Ultimatum Game (NM-MUG).
While a multiplayer version of UG was previously analyzed in the
context of one Proposer and N Responders [21-23], considering
proposals by groups of Proposers is relevant in the context of ri-
val public goods division, where 1) Proposers may be tempted to
free-ride and lower their proposals expecting other Proposers to
compensate and 2) the group sizes of Proposers and Responders
may not match, reducing the per-capita share in one of the groups.
In general, we assume that a proposal is rejected if the (average)
proposed offer is lower than the average response threshold in the
Responders group. We study under which conditions a fair outcome
can be achieved, in which Proposers offer a substantial split to the
Responders. In particular, we study the mechanism by which the
committee of Responders is selected from the population in order
to guarantee the best deal.

The NM-MUG can be used to study social settings in which
groups of people wish to negotiate a deal. For example, deals be-
tween companies or between national legislative bodies are often
discussed by committees representing each side, and as a result the
selection of committee members with specific individual strategies
can have a great influence on the final result [11]. Multiplayer ver-
sions of the Ultumatum Game are also played in the context of group
buying [13]. A specific example motivating our work are smart en-
ergy communities, such as the Amsterdam pilot sites Schoonschip?
and De Ceuvel®, in which a number of households share a single
point of coupling with the national energy grid. Behind this point of
coupling, the households can exchange energy flexibilities (demand
and supply) locally and thus more efficiently [5]. The summed re-
maining flexibility of each community could be used in negotiation
with a different community, as a second layer of local or regional
energy exchange [14]. This suggests a multiplayer bargaining be-
tween two groups (Proposing and Responding community) which
fits well with the very general layout of NM-MUG.

We simulate this scenario by means of a co-evolutionary process
in which committees of Proposers and Responders are repeatedly se-
lected from separate populations. The NM-MUG is used to compute
the resulting fitness of individuals in each populations, which then
evolve following imitation dynamics and mutation. When selecting
randomly composed committees of Proposers and Responders (that
is, each individual has an equal probability of being selected for
the group of Proposers or Responders in charge of negotiating), we
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find that the average offer of Proposers and acceptance thresholds
of Responders co-evolves to an unfair state where Proposers get
(almost) all the share. From this base scenario, it is possible to test
mechanisms for selecting the Responder committees, aiming to find
arrangements that equalize the average gains of both populations.
This base model can thus lay out directions for future research in
the areas social choice, committee selection and the emergence of
fairness in co-evolving communities.

2 BACKGROUND AND RELATED WORK

The Ultimatum Game (UG) is a well-known interaction paradigm,
widely used to evince the conflict between payoff maximization and
fairness — and the puzzling human preference for the latter [10]. As
mentioned in the previous section, in this game two players interact
in two distinct roles. One is called the Proposer and the other is
denominated Responder. The game is composed by two sub-games,
one played by each role. First, some amount of a given resource, e.g.
money, is conditionally endowed to the Proposer; this agent must
then suggest a division with the Responder. Secondly, the Respon-
der will accept or reject the offer. The agents divide the money as it
was proposed, if the Responder accepts. By rejecting, none of them
will get anything. The strategy set of the Proposers comprises any
possible division of the resource. The strategies of the Responders
are acceptance or rejection, contingent on the offer made. Often,
Responders’ strategies are assumed to be probabilities of accep-
tance that are non-decreasing on the offer made. Frequently it is
assumed that any Responder decision is codified in a threshold of
acceptance: bellow this threshold offers are rejected (i.e., accepted
with probability 0) and above the threshold offers are accepted
with probability 1 [16]. As previously mentioned, while the UG is
a sequential game usually expressed in extensive-form, by having
Responders declaring their thresholds of acceptance we can also
formalize this interactions as a normal-form game. In any case, the
rational behaviour in the UG can be anticipated using traditional
game-theoretical equilibrium analysis. Of special interest in this
setting is the sub-game perfect equilibrium [17]. If one divides the
UG in two stages it is possible to apply the method of backward
induction to infer such an equilibrium. The last agent to play is the
Responder: Facing the decision of rejecting (earn 0) or accepting
(earn some money, even if a really small quantity), this agent would
always prefer to accept. Secure about this deterministic acceptance,
the Proposer will offer the minimum possible, maximizing his own
share. Denoting by p the fraction of the resource offered by the
Proposer, p € [0, 1], and by q the acceptance threshold of the Re-
sponder, g € [0, 1], acceptance will occur whenever p > g and the
sub-game perfect equilibrium of this game is defined by values of p
and q slightly above 0.

While the UG is a 2-person game, there are several real-world
situations that consist in bargaining within (and between) groups
of individuals. Here we focus on a multiplayer extension of the
ultimatum game in which a group of N Proposers offers a division
of resource to a group of M Responders (NM-MUG). A previous
formalization of Multiplayer Ultimatum Game (MUG), close to
the one that we follow here, was proposed in [23]. In that work, a
single Proposer makes an offer to a group of Responders. Individu-
ally, each Responder in the groups states acceptance or rejection;

the group of Responders as a whole accepts the offer provided that a
minimum number of acceptances exist. A more recent study resorts
to reinforcement learning (the Roth-Erev algorithm) to show that
higher proposals are likely to emerge when stricter group decision
rules (requiring more accepting Responders for group acceptance)
are considered [22], also in the context of 1 Proposer versus N
Responders. An alternative multiplayer (3-person) formulation of
the UG was proposed in [26]. Also, in a seminal work, Fehr and
Schmidt explicitly considered the effect of competition between
Proposers and Responders in a market game closely related with
the UG [7]. In this game, either 1) a group of sellers (Proposers)
compete to sell one unit of a good to a buyer (Responder); or one
Proposer suggests an offer that leads many Responders to compete
against each other to accept it. In these market games, subjects tend
to adopt unfairer strategies, differently to what happens with the
2-person UG and as predicted by the rationality self-interest model.

Nevertheless, both in the 2-person and the multiplayer ultimatum
game, the predictions assuming perfect rationality were challenged
by experimental and theoretical works [6, 7, 9, 21]. Instead of re-
sorting to equilibrium notions of classical game theory to study
the behavior of agents when interacting in a multi-Proposer multi-
Responder ultimatum game, we adopt methods from population
ecology, such as evolutionary game theory (EGT). EGT has been
used to analyze strategic interactions in several domains such as
auctions [18] or market dynamics [2] (as an example). In a social
context, EGT can describe individuals who revise their strategies
through social learning, being influenced by the behaviours and
achievements of others [24]. One of the most traditional tools to
describe the dynamics of an evolutionary game model is the repli-
cator equation [27]. This equation, justified in a context of trait
evolution in biology or cultural evolution across human societies,
assumes that populations are infinite and evolution proceeds favour-
ing strategies that offer a fitness higher than the average fitness of
the population. The fact that replicator equation describes a pro-
cess of social learning does not prevent it from being convenient
in the understanding of individual learning [29]. A lot of effort has
been devoted to bridging the gap between replicator dynamics and
multiagent learning [3], especially after Bérgers and Sarin showed
that there is indeed an equivalence between replicator dynamics
and a simple reinforcement learning algorithm (Cross learning) [4].

Inspired by EGT and the replicator dynamics, here we analyze
the NM-MUG resorting to an agent-based model that similarly as-
sumes that strategies performing better than average are selected
over time. For that, we consider a pairwise comparison rule [28].
As will be clarified below, we consider a population of many agents.
After playing several rounds, agents revise their strategy by ob-
serving a role-model agent, randomly picked from the population.
Imitation (i.e., copying the strategy used by the role-model) occurs
with a probability that grows with fitness difference: strategies per-
forming better have a higher probability of being imitated. Under
certain limits (high population size and low selection intensity) the
replicator dynamics is recovered in this process [28].

3 (NxM)-PERSON ULTIMATUM GAME

Let us start by describing the (N X M)-person (i.e., multi-Proposer,
multi-Responder) Ultimatum Game, the interaction paradigm used
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Figure 1: The (NXM)-person Ultimatum Game (NM-MUG).
Groups of N Proposers and M Responders are drawn from a
population of Proposers Zp and Responders Zg, respectively.
The groups’ joint proposal and threshold for acceptance de-
termine the success of the interaction.

throughout this paper. In any given NM-MUG interaction a group
of Proposers makes an offer to a group of Responders. The offer
made by the group results from a function of individual offers of
Proposers in the group (e.g., the average); this offer is accepted if
it is higher than a function of Responders’ individual acceptance
thresholds (e.g., if the offer is higher than the maximal threshold -
guaranteeing that every Responder in the groups is satisfied - or if,
again, the offer is higher than the Responders’ average threshold).
In case of acceptance, each Proposer receives the share she did not
offer, which stresses the social dilemma in the Proposers’ group:
individually, each one has interest in offering the minimum possible
but, in order to prevent a rejection, it is beneficial for all to have
the largest possible collective offer.

Formally, we model the NM-MUG by two populations Zp and
ZR, representing the Proposers and Responders, respectively (see
Figure 1). Each individual i in the population of Proposers is defined
by her personal proposal value p; € [0,1], for i € Zp. Similarly,
Responders are defined by their individual threshold of acceptance
qj € [0,1], for j € Zg. At each iteration, a group of Proposers
N C Zp and Responders M C Zp, is selected, following predefined
rules 4. These groups induce a joint proposal p = P(N) and joint
Responder threshold § = Q(M). In a simple scenario (such as the
one we will consider below) £ and Q are the average function,
ie.p = |N["'Y;enpiand G = |M|7! 2 jem qj- The proposal is
accepted iff p > g. The question is now: how to select the groups
of Proposers and Responders from each population?

3.1 Base Scenario

In the base scenario, the Proposers, forming a group of fixed size N,

are selected randomly from Zj,. The joint proposal offered by the

group is taken to be the average proposal of individuals in the group,

p=INI"! 2 jen pj- The Responder group M is composed of those

Responders that are willing to accept p, such that j € M : gj < p.
In this case, the Responders in M will have a payoff

__N
U = min(p,p--). (1)

4To simplify notation, we use N and M interchangeably as the group size of Proposers
and Responders, respectively, as well as groups of selected Proposers and Responders.
When an explicit distinction is necessary we use |N| and |M| to denote group sizes.

whereas all Responders outside M earn 0. The min operator signifies
that the Responders cannot jointly receive more than what the
Proposers offer, nor can one individual consume more than a unit
share. At the same time, Proposer i taking part in the collective
proposal by group N, offered to the group of Responders M, will
have a payoff of

UiP = min(1 - p;, (1 —pi)jl\v—/[), (2)

where p; is the proposal by individual i. Again, the min operator
ensures that Proposers cannot jointly offer more than the Respon-
ders accept; unit offers that are not accepted are lost in the context
of the deal. This loosely reflects a typical scenario in which flexibili-
ties are exchanged between smart energy communities [14], where
each individual household has a maximum amount of flexibility it
can offer, and the total sum of flexibilities exchanged between the
communities should balance out in the deal.

We are interested in the fairness of accepted deals, which we here
define as payoff equality within and between the populations.®> For
this base scenario this means that a between communities fair pro-

posal is defined as p* = %
is defined as p* = p; = pj, Vi, j; and a within Responders fair pro-
posal is obtained whenever M = Zg. The results we discuss mainly
stress between communities fairness, however we plan to explicitly
consider, in future work, both the Proposers and Responders within

population definitions of fairness.

; a within Proposers fair proposal

3.2 Responder Competition Scenario

As we detail below (Experiments and Results, Section 4) allowing
any individual i € Zg to take part in the committee of Respon-
ders (those that will accept or reject the offer) has the pernicious
effect of inducing a long-term reduction in the average values of ¢
adopted in the Responders’ population which, in turn, incentives
the Proposers to lower their p and enact highly unfair offers. Many
institutional arrangements affecting the process of Responders com-
mittee selection can be tested, departing from the base scenario
presented above. For now, we discuss the role of Responder compe-
tition based on a declared threshold of acceptance - partly inspired
in [7]. While Proposers are still randomly selected, we sort the
Responders’ declared thresholds of acceptance, partitioning the
Responders based on this ordering, and select for the committee
the individuals declaring the thresholds ranked from the m*" to the
(m + M — 1) ascending position. As an example of extreme cases,
m = 0 and M = 10 means that the 10 lowest acceptance thresh-
olds are selected and, in a population of 100 Responders, m = 90
and M = 10 means that the 10 highest acceptance thresholds are
selected.

In this case, assuming that |[N| and |M| are fixed externally, pro-
posals are accepted only whenever p > G, where § = |M|™! YjeM G
and that M is formed by the demands g; that, after sorted in an
ascending order, stand in the positions ranging from the m? hto
the (m + M — 1) positions. We study the evolutionary trajecto-
ries of strategy adoption when different rules for the selection of
Responder committees are introduced (i.e., different m and M).

SMore elaborate measures of fairness are possible [6], but left for future work.



Algorithm 1: Pseudo-code of the main cycle of our simulations.
Algorithm 2 sketches how fitness(-) is computed.

Algorithm 2: Sketch of fitness computation of individual A based
on selection of M Proposers and N Responders.

Initialize all p; € Zp,q; € Zr = X ~ U(0,1)
for t « 1 to Gens do Main cycle of interaction and strategy
update:
for j < 1to Zp+Zp do Select agent to update:
if X ~ U(0,1) < Zp/(Zp+Zg) then Update Proposer
strategy:
/* Sample two agents from Proposer
population */
A — X ~U(1,Zp) (agent to update)
| B« X ~U(1,Zp) (model agent)
Ise Update Responder strategy:
/* Sample two agents from Responder
population */
A« X ~ U(1, ZR) (agent to update)
| B« X ~U(1,Zg) (model agent)
if X ~ U(0,1) < p then Mutation:
L pa < X ~U(O0,1)
else Imitation:
fa « fitness(A)
fB « fitness(B)
prob  (1+ e A0s=1) '

if X ~ U(0,1) < prob then
| pa < pp + imitation error ~ U(—¢, €)

()

3.3 Evolutionary Dynamics

In order to study the evolutionary dynamics associated with each
Responder committee selection rule (m and M), we implement an
agent-based model in which individuals resort to social learning to
adapt their behavior over time (Algorithm 1). Initially, values of p
and q characterizing each agent are sampled from a uniform distri-
bution. For a large number of generations, individuals will adapt
their values of p and q. In each generation, |Zp| + |Zg| individuals
are sampled with replacement, following a uniform probability;
with a probability u the selected individual will randomly explore
the strategy space, adopting a random value of p (if Proposer) or
q (if Responder). This is akin to a mutation in genetic evolution.
With probability 1 — y the individual will resort to imitation. In
this case, a model agent from the same population is selected. The
fitness of both agents is calculated as the average payoff obtained
in a large number of NM-MUG interactions (Algorithm 2). Imita-
tion will occur with a probability (1 + e PfB=f4))~1 where fais
the fitness of the imitator, fg is the fitness of the model, and f is
the so-called intensity of selection, controlling how dependent the
imitation process is on agents’ fitness values. In case of imitation,
the values of p or g characterizing agent B will be adopted by agent
A. When imitation occurs, the adopted strategies are subject to a
small perturbation: we add a value between —e and €, sampled from
a uniform probability distribution. We guarantee that strategies
remain lower than 1 and greater than 0, truncating the adopted
value if necessary.

Function fitness(A)
accumulatedFitness = 0;

for i < 1 to Samples do
if A € Zp then Select Proposers including A:
| Sample |[N| — 1 other Proposers
else
| Sample |[N| Proposers
Select group of Responders M (for instance, ordering their
q values, ascending, and picking the agents having the
thresholds in the range m*" to (m + |M| — 1)th
P =2jen Pi/IN|
q = Zkem 9K/ 1M
if p > g then Proposal accepted:
if A € Zr A A € M then Compute Responder payoff:
L fitness « Uf (using Equation 1)

else Compute Proposer payoft:
L fitness « Uf (using Equation 2)

accumulatedFitness += fitness

return accumulatedFitness/samples

During the simulations, we record 1) the average strategy used
in the population of Proposers and Responders, 2) the average
acceptance rate of proposals, 3) the average fitness of Proposers
and Responders and 4) the time-series of strategy adoption. We are
particularly interested in understanding how strategy dynamics
are impacted by different Responder committee selection rules (i.e.,
different values of m and M). We report these results next.

4 EXPERIMENTS AND RESULTS

We simulate the NM-MUG as described previously and present the
results in the following. We average over 100 runs of 20,000 genera-
tions each, and we use 100 samples for the fitness computation. We
set Zp = Zg = 100, u = 0.001, € = 0.01, and § = 10. In future work
we shall test the effect of varying f, although we expect that in-
creasing this parameter will result in an overall decrease in fairness
[19, 23].

After simulating the co-evolving dynamics of agents playing
NM-MUG, and adapting their p and q strategies accordingly, we
first realized that the base scenario nurtures long-term unfair
divisions between Proposers and Responders. We verified that the
p and q evolve, on average — taken over the whole population(s),
over 20,000 generations and over 100 runs — to values close to 0.01
and 0.1, respectively.

We then proceeded to test how Responder competition for
being included in the committee affects these dynamics. We mea-
sured the average strategy usage, acceptance rate and fitness given
extreme (very low or very high m) and moderate (m ~ Zg/2) Re-
sponder committees. As Figure 2a conveys, increasing m increases
the average values of p and q adopted by individuals in the long-
run. Notwithstanding, selecting extreme committees that have the
highest values of q is (as evidenced by Figure 2a, bottom panel)
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Figure 2: Responder competition: Proposals are made by random groups of Proposers with size N = 10 and the group of
Responders is formed by the Responders with the m‘" to the (m + 9 — 1) highest values of g.

pernicious by leading to low acceptance rates. Selecting committees
that are characterized by the lowest values of q (low m) is disad-
vantageous for the Responders population as, over time, Proposers
learn to offer extremely low proposals. Selecting committees formed
by the highest values of g (high m) is equally harmful: due to the
high fraction of proposals being rejected, individuals are unable
to obtain high values of fitness. The optimal committee selection
rule selects those representatives with a value of g close to the
population median (i.e., m ~ Zg/2), as evidenced in Figure 2b.
Changing m has a profound impact on the evolving dynamics
of p and ¢, as represented in Figure 2c, where time-series corre-
sponding to exemplifying runs for m = 30, m = 45, m = 50 and
m = 90 are presented. Interestingly, whenever the choice of gs
to form the committee is dictated by m = 50, a cycling dynamic
is often observed, representing periods of fairness and unfairness
that repeatedly succeed over time. In future work we shall delve

deeper into this question by further investigating the causes of such
evolutionary dynamics.

Finally, we investigate the effect of increasing the Proposers’
group size, N. As hypothesized before, increasing N yields a stricter
social dilemma in the Proposer population, akin to a public goods
game: individuals will maintain a low value of p, expecting to
maximize their share while hoping that others propose an offer high
enough to guarantee acceptance by the Responders. As observed in
Figure 3, this dilemma is more pressing in larger Proposer groups,
as the average p adopted decreases with N.

5 CONCLUSION

In this paper we have proposed a new multiplayer version of the
classical Ultimatum Game, the NM-MUG, in which a group of N
Proposers jointly offers a division of resources to a group of M
Responders. A preliminary study showed that, in the absence of
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Figure 3: Effect of increasing Proposers’ group size N on the
average proposal level p, for different Responders’ selection
committee rules (m). The average offer decreases — thus lead-
ing to a more unfair scenario - whenever Proposers organize
in larger groups.

any group selection mechanism, the co-evolving populations of
Proposers and Responders converge to a state in which proposals
and acceptance thresholds are low, leading to unfair outcomes. This
effect is more pronounced when the Proposers’ groups are larger.
We then investigated different Responder committee selection rules,
contingent on their declared acceptance thresholds. We found that
selecting extreme committees is detrimental to the Responders’
long-term payoff: selecting the lowest-demanding Responders in-
centives Proposers to offer low proposals whereas selecting the
highest-demanding Responders leads to many offers being rejected.
Moderate committees - i.e., selecting Responders with acceptance
thresholds close to the population median - elicit the highest long-
term gains for the Responders population as a whole. These first
results provide a practical message for institutional design and the
model proposed allows testing policies and emergent behaviors on
the intersection between social choice theory, committee selection
and fairness elicitation.

We see many interesting avenues for further research based on
these first findings. Obviously, different committee selection rules
can be envisioned and tested, for both the Responders as well as for
Proposers. In addition, the utility functions used can be tailored to a
specific real-world scenario such as the exchange of flexibilities be-
tween energy communities [14]. Furthermore, measures of fairness
can be incorporated into the utility function directly (as in e.g. [6]),
yielding potentially more complex and interesting dynamics.
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