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ABSTRACT
Recently, there has been a surge in interest in safe and robust tech-
niques within reinforcement learning (RL). Current notions of risk
in RL fail to capture the potential for systemic failures such as
abrupt stoppages from system failures or surpassing of safety thresh-
olds and the appropriate responsive controls in such instances. We
propose a novel approach to risk minimisation within RL in which,
in addition to taking actions that maximise its expected return, the
controller learns a policy that is robust against stoppages due to an
adverse event such as an abrupt failure. The results of the paper
cover fault-tolerant control in worst-case scenarios under random
stopping and optimal stopping, all in unknown environments. By
demonstrating that the class of problems is represented by a variant
of stochastic games, we prove the existence of a solution which is
a unique fixed point equilibrium of the game and characterise the
optimal controller behaviour. We then introduce a value function
approximation algorithm that converges to the solution through sim-
ulation in unknown environments.
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1 INTRODUCTION
A significant amount of focus within reinforcement learning (RL) is
now being placed on safe execution, robust control, fault-tolerance
and risk-minimisation [12]. Driving this interest is an increase in
application of RL in real-world environments and industrial appli-
cations such as traffic light control [2], robotics [9], autonomous
vehicles [24] and healthcare [13]. Applying RL in various environ-
ments requires safe operation of autonomous agents is ensured. At
present however, such frameworks within RL are restricted to mod-
els in which the agent modifies the state process using an expecta-
tion measure which is altered to accommodate a predefined notion
of risk e.g. H∞ control [21]. Other notions of risk include coherent
risk, conditional value at risk (CVar) [27].

There are numerous instances in which controllers are required
to act in systems which suffer the potential for random stoppages
or failures that produce catastrophic outcomes [12]. Examples in-
clude, in finance, optimal trading under random counterparty risk
[16], and in control systems, optimal robotic control with random
sensor failure and helicopter control under engine failure [1]. Con-
sequently, when using RL in environments that present potential is-
sues of safety, the important question of how to control the system
in a way that is robust against faults that lead to catastrophic events
arises. An additional issue in matters of safety is when to optimally
stop the system with concern for risk of adverse events (e.g. when

to sell all asset holdings with concern for financial ruin). Despite its
importance however, current notions of risk do not offer a method
of mitigating risk by selectively stopping the system.

To this end, we for the first time construct a method that enables
an RL controller to determine an optimal sequence of actions that
is robust against failures that lead to adverse events. In order to
find the optimal control policy, it is necessary to determine a stop-
ping criterion that stops the system which produces a worst-case
scenario. Secondly, we construct a method that enables an RL agent
to determine when to stop the system in order to maximise its ex-
pected payoff in the presence of adverse risk. As we show, each
problem admits a two-player stochastic game (SG) representation
in which one of the players is delegated the task of modifying the
system dynamics through its actions and the other player has the
task of stopping the system under an adversarial criterion.

We perform a formal analysis of an SG between a ‘controller’
and a ‘stopper’. Under this interpretation, the outcome is determined
by a controller that affects the state process through its actions
whilst playing against an adversary that has the right to choose
when to stop the game. This produces a framework that finds an op-
timal sequence of actions that is robust against stoppages at times
that pose adverse risk. The notion of risk is defined in the worst-case
scenario sense — given the complete set of probability distribu-
tions, the agent considers the worst-case in assessing the expected
payoff.

These results tackle optimal stopping problems (OSPs) under
worst-case scenarios. OSPs are a subclass of optimal stochastic con-
trol (OSC) problems in which the goal is to determine a criterion for
stopping the system at a time that maximises some state-dependent
payoff [22]. Despite the fundamental relevance of risk in RL, cur-
rent iterative methods in OSPs in unknown environments are re-
stricted to risk-neutral settings [28] and do not permit the inclusion
of a controller that modifies the dynamics. Introducing a notion of
risk (generated adversarially) adds considerable difficulty as the so-
lution concept is now an SG saddle point equilibrium, the existence
of which must be established.

As we show, our framework provides an iterative method of solv-
ing worst-case scenario OSPs in unknown environments. The frame-
work is developed through a series of theoretical results: first, we
establish the existence of a value of the game which characterises
the payoff for the (saddle point) equilibrium. Second, we prove a
contraction mapping property of a Bellman operator of the game
and that the value is a unique fixed point of the operator. Third, we
prove the existence and characterise the optimal stopping time. We
then prove an equivalence between the game of control and stop-
ping and worst-case OSPs and show that the fixed point solution of
the game solves the OSP.



Finally, using an approximate dynamic programming method,
we develop a simulation-based iterative scheme that computes the
optimal controls. The method applies in settings in which neither
the system dynamics nor the reward function are known. Hence,
the agent need only observe its realised rewards by interacting with
the environment.

1.1 Related Work
Presently, the coverage of FT within RL is extremely limited. In
[32] RL is applied to tackle systems in which faults might occur
with the occurrence of a fault incurring a large cost. Similarly, RL
is applied to a problem in [30] in which an RL method for Bayesian
discrimination which is used to segment the state and action spaces.
Unlike these methods in which infrequent faults from the environ-
ment generate negative feedback, our method uses a game-theoretic
framework in order to simulate faults leading to an FT trained RL
policy.

Our main results are centered around a minimax proof that es-
tablishes the existence of a value of the game. This is necessary for
simulating the stopping action to induce fault-tolerance. Although
minimax proofs are well-known in game theory [11, 19, 25], re-
placing a player’s action set with stopping times necessitates a min-
imax proof (which now relies on a construction of open sets) which
markedly differs to the standard methods within game theory. Addi-
tionally, crucial to our analysis is the characterisation of the adver-
sary optimal stopping time (Theorem 5.15).

A relevant framework is a two-player optimal stopping game
(Dynkin game) in which each player chooses one of two actions;
to stop the game or continue [10]. Dynkin games have generated a
vast literature since the setting requires a markedly different analy-
sis from standard stochastic game theory. In the case with one stop-
per and one controller such as we are concerned with, the minimax
proof requires a novel construction using open sets to cope with the
stopping problem for the minimax result.

Presently, the study of optimal control that combines control and
stopping is limited to a few studies e.g. [8]. Similarly, games of con-
trol and stopping have been analysed in continuous-time in specific
contexts e.g. linear diffusions [17], geometric Brownian motion [4]
and jump-diffusions [3, 20]. In these analyses, all aspects of the en-
vironment are known and the controller affects the dynamics of a
continuous diffusion process. In general, under these methods, solv-
ing these problems requires computing analytic solutions to non-
linear partial differential equations which are typically insoluble.

There is a plethora of work on OSPs in continuous and discrete-
time [22]. [28] use approximate dynamic programming methods to
construct an iterative scheme to compute the solution of an OSP.
Our results generalise existing analyses to strategic settings with
both a controller and an adversarial stopper which tackles risk in
OSPs.

1.2 Organisation
The paper is organised as follows: in Section 2, we introduce some
relevant mathematical preliminaries and give a canonical descrip-
tion of both the fault-tolerant RL problem and the OSP under worst-
case scenarios. In Section 3, we provide illustrative examples for
each problem within the context of finance and RL. In Section 4,

we introduce the underlying SG framework which we use within
the main theoretical analysis which we perform in Section 5. Lastly
in Section 6, we develop an approximate dynamic programming ap-
proach that enables the optimal controls to be computed through
simulation, followed by some concluding remarks.

2 CANONICAL DESCRIPTION
In this setting, the state of the system is determined by a stochastic
process {st |t = 0, 1, 2, . . .} whose values are drawn from a state
space S ⊆ Rp for some p ∈ N. The state space is defined on a
probability space (Ω,B, P), where Ω is the sample space, B is the
set of events and P is a map from events to probabilities. We denote
by F= (Fn )n≥0 the filtration over (Ω,B, P) which is an increasing
family of σ−algebras generated by the random variables s1, s2, . . ..

We operate in a Hilbert space V of real-valued functions on L2,
i.e. a complete1 vector space which we equip with a norm ∥ · ∥ :
V→ R>0×{0} given by ∥ f ∥µ :=

√
Eµ [f 2(s)] and its inner product

⟨f , f T ⟩µ := Eµ
[
f (s)f T (s)

]
where µ : B(Rn ) → [0, 1] is a proba-

bility measure. The problem occurs over a time interval [0,K] where
K ∈ N × {∞} is the time horizon. A stopping time is defined as a
random variable τ ∈ {0, 1, 2, . . .} for which {ω ∈ Ω |τ (ω) ≤ t} ∈ Ft
for any t ∈ [0,K] — this says that given the information generated
by the state process, we can determine if the stopping criterion has
occurred.

We now describe the two problems with which we are concerned
that is, FT RL and OSPs under worst-case scenarios. We later prove
an equivalence between the two problems and characterise the solu-
tion of each problem.

2.1 Fault-Tolerant Reinforcement Learning
We concern ourselves with finding control policy that copes with
abrupt system stoppages and failures at the worst times in problems.
In the current setting, the reward and transition functions are as-
sumed a priori unknown. Unlike standard methods in RL and game
theory that have fixed time horizons (or purely random exit times)
in the following, the process is stopped by a fictitious adversary
that uses a stopping strategy to decide when to stop given its obser-
vations of the state. In order to generate an FT control, we simulate
the adversarys action whilst the controller seeks to determine its op-
timal policy. This as we show, induces a form of control that is an
FT best-response control.

A formal description is as follows: an agent exercises actions
that influence the sequence of states visited by the system. At each
state, the agent receives a reward which is dependent on the state.
The agent’s actions are selected by a policy π : S× A → [0, 1]
which is a map from the set of states S and the set of actions A to
a probability. We assume that the action set is a discrete compact
set and that the agent’s policy π is drawn from a compact policy set
Π. The horizon of the problem is at most T but the process may be
terminated earlier at some (F− measurable) stopping time at which
point the agent receives a terminal reward.

1A vector space is complete if it contains the limit points of all its Cauchy sequences.
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The agent’s performance function is given by:

Jk,π [s] = E
[k∧T∑
t=0

γ tR(st ,at ) + γk∧TG(sk∧T )
�����s0 = s

]
, (1)

where a ∧ b := min{a,b}, E is taken w.r.t. the transition function
P and the controller’s policy π ∈ Π. The performance function (1)
consists of a reward function R : S× A → R which quantifies
the agent’s immediate reward when the system transitions from one
state to the next, a bequest function G : S→ R which quantifies
the reward received by the agent when the system is stopped and
γ ∈ [0, 1[, a discount factor. We assume R and G are bounded and
measurable.

The problem we consider is the following:
Find (k̂, π̂ ) ∈ T× Π and J k̂, π̂ [s] s.th.

max
π ∈Π

(
min
k ∈T

Jk,π [s]
)
= J k̂, π̂ [s], (2)

where the minimisation is taken pointwise and T ⊆ {0, 1, 2 . . .} is
a set of (F−measurable) stopping times.

Hereon, we employ the following shorthand R(s,a) ≡ Ras for any
s ∈ S,a ∈ A.

The dual objective problem in (2) consists of finding both a stop-
ping time that minimises J and an optimal policy that maximises
J . By considering the tasks as being delegated to two individual
players, the problem becomes an SG. The SG occurs between a
‘controller’ that seeks to maximise J by manipulating state visita-
tions through its actions and an adversary or ‘stopper’ that chooses
a time to stop the process to minimise J (i.e. at the worst possible
time). The structure of the game combines an OSP and a Markov
decision process (MDP). We consider a setting in which neither
player has up-front knowledge of the transition model or objective
function but each only observes their realised rewards.

2.2 Robust Optimal Stopping
The second problem we consider is robust optimal stopping. In
OSPs, the goal is to determine a criterion for stopping the system at
a time that maximises some state-dependent payoff. OSPs are ubiq-
uitous in finance e.g. for options pricing [23] and in economics for
characterising optimal market entry/exit strategies [18]. OSPs are
closely related to multi-armed bandits and clinical trials [15].

OSPs in worst-case scenarios regularly arise in economic decision-
making when an agent seeks to determine an optimal time to exit
the financial market [31] or terminate some costly industrial pro-
cess [33] under worst-case scenarios. Examples of worst-case OSPs
are agents that seek to determine when to arrest a costly industrial
process or experiment (e.g. clinical trials) and, within finance, in-
vestors that seek to determine market entry/exit decisions; each un-
der worst-case scenarios.

We later prove an equivalence of SGs of control and stopping
and robust OSPs, the latter of which we now introduce:

The problem involves an agent that seeks to find an optimal
stopping time τ̂ under the adverse non-linear expectation EP :=
min
π ∈Π
EP,π such that:

τ̂ ∈ argmax
τ ∈T

EP [Yτ ] = argmax
τ ∈T

(
min
π ∈Π
EP,π [Yτ ]

)
, (3)

where Yk :=
∑k∧T
t=0 γ tR(st ,at ) + γk∧TG(sk∧T ).

The problem describes an agent that seeks to find an optimal
stopping time under a worst-case scenario.

3 EXAMPLES
To elucidate the ideas, in this section we provide concrete applica-
tions of the problems we are concerned with.

As the following example illustrates, the framework applies to
actuator failure within RL applications.

3.1 Example: Control with random actuator
failure

Consider an adaptive learner, for example a robot that uses a set of
actutors to perform actions. Given full operability of its set of actua-
tors, the agent’s actions are determined by a policy π : S×A → [0, 1]
which maps from the state space S and the set of actions A to a
probability. In many systems, there exists some risk of actuator fail-
ure at which point the agent thereafter can affect the state transi-
tions by operating only a subset of its actuators. In this instance,
the agent’s policy determines actions using only a subset of its ac-
tion space Â ⊂ A. In this scenario, the agent is now restricted to
policies πpartial : S × Â → [0, 1] which map from from a subset of
operative actuators — thereafter its expected return is given by the
value functionV πpartial . In order to perform robustly against actuator
failure, it is therefore necessary to consider a set of stopping times
T⊆ {0, 1, 2, . . .} after which, the robot can no longer select actions
that require functionality of the full set of actuators. In particular, in
order to construct a robust policy against catastrophic outcomes, it
is useful to consider actuator failure in worst-case scenarios.

The problem involves finding a pair (τ̂ , π̂ ) ∈ T×Π which consists
of a stopping time and control policy s.th.

min
k ′∈T

(
max
π ′∈Π

E
[
Hπ ′,k ′(s)

] )
= E

[
H π̂ , τ̂ (s)

]
,

where at ∼ π ′ andHπ ,k (s) := ∑k∧∞
t=0 γ tR(st ,at )+γk∧∞V πpartial (sk∧∞).

The resulting policy π̂ is robust against actuator failure in worst-
case scenarios.

3.2 Example: Optimal selling in an adversarial
market

An investor (I) seeks to exit the market (sell all market holdings) at
an optimal stopping time τ ∈ T. It is assumed that the market acts
in such a way to minimise risk-free profit opportunities for the in-
vestor.2 When I exits the market, I receives a return of λτXτ where
Xt ≡ X (t ,ω) ∈ [0,∞[×Ω is a Markov process that determines the
asset price at time t and λ ∈]0, 1] is I’s discount factor. Classically,
the exit time is computed as the solution to the following problem:

max
k ∈T
EP

[
γkXk

]
. (4)

In (4), the expectation is taken with respect to a risk-neutral measure
P . However, the above formulation does not include the adversarial
effect of the market. To accommodate this, we modify the objective

2This is the no arbitrage principle [7].
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to the following:

max
k ∈T

(
min
π ∈Π
EP,π

[
γkXk

] )
. (5)

In (5), the worst-case dynamics are induced by choice of adversarial
probability measure π that alters the neutral measure P over which
the objective expectation is defined. This captures the observed ef-
fect that financial markets adversarially eliminate investment oppor-
tunities. Now the goal of the agent is to find an optimal time to exit
a financial market under an adversarial market scenario.

4 STOCHASTIC GAMES
Embedded within problem (2) is an interdependence between the
actions of the players — that is, the solution to the problem is
jointly determined by the actions of both players and their responses
to each other. The appropriate framework to tackle this problem is
therefore an SG [25]. An SG is an augmented MDP which proceeds
by two players tacking actions that jointly manipulate the transitions
of a system over K rounds which may be infinite. At each round, the
players receive some immediate reward or cost which is a function
of the players’ joint actions. The framework is zero-sum so that a
reward for player 1 simultaneously represents a cost for player 2.

Formally, a two-player zero-sum stochastic game is a 6−tuple
⟨S,Ai ∈{1,2}, P ,R,γ ⟩ where S = {s1, s2, . . . , sn } is a set of states,
Ai is an action set for each player i ∈ {1, 2}. The map P : S×
A1 × A2 × S→ [0, 1] is a Markov transition probability matrix i.e.
P(s ′; s,a1,a2) is the probability of the state s ′ being the next state
given the system is in state s and actions a1 ∈ A1 and a2 ∈ A2 are
applied by player 1 and player 2 (resp.). The function R : S×A1×A2
is the one-step reward for player 1 and represents one-step cost for
player 2 when player 1 takes action a1 ∈ A1 and player 2 takes
action a2 ∈ A2 and γ ∈ [0, 1[ is a discount factor. The goal of each
player is to maximise its expected cumulative return — since the
game is antagonistic, the total expected reward received by player 1
which we denote by J , represents a total expected cost for player 2.

Denote byHt ≤K the set of all finite histories and by H≡ ∪t ≤KHt
so that for eachhj≤K = ((s0, (a1,a2)), (s1, (a1,a2)), . . . , ((sj , (a1,a2)) ∈
Hj which is a sequence of state and joint action pairs. For each
player i ∈ {1, 2}, a pure strategy is a map πi : (H) × Ai → [0, 1]
that assigns to every finite history hj≤K ∈ H an action π (h) in
Ai . Similarly, for each player i ∈ {1, 2}, a behavioural strategy
is a map πi : H× Ai → [0, 1] that assigns to every finite history
h ∈ H a probability distribution π (h) in Ai . We denote the space
of strategies for each player i ∈ {1, 2} by Πi . Note that pure strate-
gies are a degenerate class of behavioural strategies which assign
to any history h ∈ H the Dirac measure with its probability mass
concentrated at a single point π (h).

For SGs with Markovian transition dynamics, we can safely dis-
pense with path dependencies in the space of strategies.3 Conse-
quently, w.log. we restrict ourselves to the class of behavioural strate-
gies that depend only on the current state and round, namely Markov
strategies, hence for each player i, the strategy space Πi consists of
strategies of the form πi : S× Ai → [0, 1]. It is well-known that
for SGs, an equilibrium exists in Markov strategies even when the
opponent can draw from non-Markovian strategies [14].
3There are some exceptions for games with payoff structures not considered here for
example, limiting average (Ergodic) payoffs [6].

In SGs, it is usual to consider the case A1 = A2 so that the
players’ actions are drawn from the same set. We depart from this
model and consider a game in which player 2 can choose a time to
stop the process so that the action set for player 2 is the set T ⊆
{0, 1, 2, . . .} which consists of (F−measurable) stopping times. In
this setting, player 1 can manipulate the system dynamics by taking
actions drawn from A1 (we hereon use A) and at each point, player
2 can decide to intervene to stop the game.

Let us define by val+[J ] := min
k ∈T

max
π ∈Π

Jk,π the upper value func-

tion and by val−[J ] := max
π ∈Π

min
k ∈T

Jk,π , the lower value function.

The upper (lower) value function represents the minimum payoff
that player I (player II) can guarantee itself irrespective of the ac-
tions of the opponent.

The value of the game exists if we can commute the max and
min operators:

val−[J ] = max
π ∈Π

min
k ∈T

Jk,π [·] = min
k ∈T

max
π ∈Π

Jk,π [·] = val+[J ]. (6)

We denote the value by J⋆ := val+[J ] = val−[J ] and denote by
(k̂, π̂ ) ∈ T× Π the pair that satisfies J k̂, π̂ ≡ J⋆. The value, should
it exist, is the minimum payoff each player can guarantee itself un-
der the equilibrium strategy. In general, the functions val+[J ] and
val−[J ] may not coincide.

Should the value J⋆ exist, it constitutes a saddle point equilib-
rium of the game in which neither player can improve their payoff
by playing some other control — an analogous concept to a Nash
equilibrium for the case of two-player zero-sum games [26]. Thus
the central task to establish an equilibrium involves unambiguously
assigning a value to the game, that is proving the existence of J⋆.

5 MAIN ANALYSIS
In this section, we present the key results and perform the main
analysis of the paper. In the main analysis, our first task is to estab-
lish the existence of a value of the game then secondly, we perform
analyses that enables us to construct an approximate dynamic pro-
gramming method. In particular, we construct a Bellman operator
for the game and show that the operator is a contraction mapping.
We show that the value is unique and that the value coincides with
a fixed point of the Bellman operator. Using these results, we con-
struct an equivalence between robust OSPs and games of control
and stopping. We defer some of the proofs to the appendix.

5.1 Summary of Main Results
Our results develop the theory of risk within RL to cover instances
in which the agent has concern for stopping the process at an opti-
mal time. We develop the theory of SGs to cover games of control
and stopping when neither player has up-front environment knowl-
edge. In particular, we establish the existence of a value of the game
in a discrete-time setting and show that the value can be obtained
using a value-iterative method. This, as we show in Sec. 9, under-
pins a simulation-based scheme that is suitable for settings in which
the transition model and reward function is a priori unknown.

5.2 Theoretical Analysis
The purpose of this section is to twofold: our first task is to establish
the existence of a value of the game. Secondly, we perform analyses
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that enables us to construct an approximate dynamic programming
method. In particular, we construct a Bellman operator for the game
and show that the operator is a contraction mapping. We show that
the value is unique and that the value coincides with a fixed point of
the Bellman operator. Using these results, we construct an equiva-
lence between robust OSPs and games of control and stopping. We
defer some of the proofs to the appendix.

Our results are built under the following assumptions:
Assumption A.1. Stationarity: the expectations E are taken w.r.t.

a stationary distribution so that for any measurable function f we
have E [f (s0)] = E [f (sk )] for any k ≥ 0.

Assumption A.2. Ergodicity: i) Any invariant random variable of
the state process is P−almost surely (P−a.s.) a constant.

Assumption A.3. Markovian transition dynamics: the transition
probability function P satisfies the following equality: P(sk+1 ∈
A|Fk ) = P(sk+1,A) for any A ∈ B(Rp ).

Assumption A.4. The constituent functions {R,G} in (1) are square
integrable i.e. R,G ∈ L2(µ).

We begin the analysis with some preliminary lemmeta which will
become useful for proving the main results:

LEMMA 5.1. Define val+[f ] := minb ∈Bmaxa∈A f (a,b) and de-
fine val−[f ] := maxa∈Aminb ∈B f (a,b), then for any b ∈ B we have
that for any f ,д ∈ L and for any c ∈ R>0:����max

a∈A
f (a,b) −max

a∈A
д(a,b)

���� ≤ c

=⇒ |val−[f ] − val−[д]| ≤ c . (7)

The proof is straightforward.

LEMMA 5.2. For any f ,д,h ∈ L and for any c ∈ R>0 we have
that:

∥ f − д∥ ≤ c =⇒ ∥min{ f ,h} −min{д,h}∥ ≤ c

LEMMA 5.3. Let the functions f ,д,h ∈ L then

∥max{ f ,h} −max{д,h}∥ ≤ ∥ f − д∥. (8)

We now introduce some concepts that relate to estimates on the
operators of the game. These concepts will be useful for proving
the existence of a fixed point.

Definition 5.4. An operatorT : is said to be a contraction w.r.t a
norm ∥ · ∥ if there exists a constant c ∈ [0, 1[ s.th for anyV1,V2 ∈ V

we have that:

∥TV1 −TV2∥ ≤ c∥V1 −V2∥. (9)

A central task of the paper is to prove that the Bellman operator
for the game is a contraction mapping. Thereafter, convergence to
the unique value ofthe game using T is proved

Definition 5.5. An operator T : V → V is non-expansive if
∀V1,V2 ∈ Vwe have that:

∥TV1 −TV2∥ ≤ ∥V1 −V2∥. (10)

Consider a Borel measurable function which is absolutely inte-
grable w.r.t. the probability transition kernel P · then:

E
[
J [s ′]|Ft

]
=

∫
S
J [s ′]Pass ′ . (11)

In this paper, we denote by (P J )(s) :=
∫
S
J [s ′]Pasds ′ .

We now introduce the operator of the game which is of central
importance:

T J := min
τ ∈T

{
max
a∈A

Ras + γ
∑
s ′∈S

Pass ′ J
τ ,π [s ′],G(Sτ )

}
. (12)

The operator T enables the game to be broken down into a se-
quence of sub minimax problems. It will later play a crucial role in
establishing a value iterative method for computing the value of the
game.

LEMMA 5.6. The operator T satisfies the following:

(1) (Montonicity) For any J1, J2 ∈ L2 s.th. J1(s) ≤ J2(s),∀s ∈ S

then T J1(s) ≤ T J2(s),∀s ∈ S.
(2) (Constant shift) Let I (s) ≡ 1 be the unit function, then for any

J ∈ L2 and for any scalar α ∈ R, T satisfies T (J + αI )(s) =
T J (s) + αI (s).

Before performing the analysis on T however, we firstly prove
the existence of the value of the game:

THEOREM 5.7.

val+[J ] = val−[J ] ≡ J⋆. (13)

Theorem 5.7 establishes the existence of the game which per-
mits commuting the max and min operators of the objective (2).
Crucially, the theorem secures the existence of an optimal pair of
controls (τ̂ , π̂ ) ∈ T× Π — the computation of which, is the subject
of the next section.

PROOF. We begin by noting the following inequality holds:

val+[J ] = min
τ ∈T

max
π ∈Π
E[Jτ ,π [s]] ≥ max

π ∈Π
min
τ ∈T
E[Jτ ,π [s]] = val−[J ].

(14)

The inequality follows by noticing Jk,π ≤ max
π ∈Π

Jk,π and thereafter

applying the mink ∈T and maxπ ∈Π operators.
The proof is now settled by reversing the inequality in (14). To

begin, choose a sequence of open intervals {Dm }∞m=1 s.th. for each
m = 1, 2, . . . D̄m is compact and D̄m ⊃ D̄m+1 and [0,T ] = ∩∞

m=1D̄m

and define τD (m) := infk ∈Dm E[Jk,π [s]].
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We now observe that:

E[J τ̂ , π̂ [s]] (15)

= max
π ∈Π
E


τD (m)∑
t=0

γ t (R(st ,at ) +G(sτD (m)))


− E

τD (m)∑
t=τ̂

γ t (R(st ,at ) +G(sτD (m)))


≥ E
[
JτD (m),π [s]

]
−

������E

τD (m)∑
t=τ̂

γ t (R(st ,at ) +G(sτD (m)))

������

≥ E
[
JτD (m),π [s]

]
−
τD (m)∑
t=τ̂

γ t
��E[R(st ,at )] + E [

G(sτD (m))
] ��

≥ E
[
JτD (m),π [s]

]
−
τD (m)∑
t=τ̂

γ t (E [|R(s0, ·)|] + E [|G(s0)|])

= E
[
JτD (m),π [s]

]
+ γ τD (m)+1 1 − γ τ̂−τD (m)

1 − γ
c

= lim
m→∞

inf E[JτD (m),π [s]] + lim
m→∞

[
γ τD (m)+1 1 − γ τ̂−τD (m)

1 − γ

]
c

≥ E[J τ̂ ,π [s]], (16)

where we have used the stationarity property and, in the limit m →
∞ and the Fatou lemma to generate the inequality after taking the
limit. The constant c is given by c := (E[|R(s0, ·)|]+E[|G(s0)|]) ∈ L.

Hence, we now find that

E[J τ̂ , π̂ [s]] ≥ E[J τ̂ ,π [s]]. (17)

Now since (17) holds ∀π ∈ Π we find that:

E[J τ̂ , π̂ [s]] ≥ max
π ∈Π
E[J τ̂ ,π [s]]. (18)

Lastly, applying min operator we observe that:

E[J τ̂ , π̂ [s]] ≥ min
τ ∈T

max
π ∈Π
E[Jτ ,π [s]] = val+[J ]. (19)

It now remains to show the reverse inequality holds:

E[J τ̂ , π̂ [s]] ≤ max
π ∈Π

min
τ ∈T
E[Jτ ,π [s]] = val−[J ]. (20)

Indeed, we observe that

E
[
J τ̂ , π̂ [s]

]
(21)

≤ min
τ ∈T
E

[
Jτ∧m, π̂ [s]

]
+ E

[ ∞∑
t=m

γ t (|R(st ,at )| + |G(st )|)
]

(22)

≤ lim
m→∞

[
min
τ ∈T
E

[
Jτ∧m, π̂ [s]

]
+ c(m)

]
(23)

= min
τ ∈T
E

[
Jτ , π̂ [s]

]
≤ max

π ∈Π
min
τ ∈T
E

[
Jτ ,π [s]

]
, (24)

since γ ∈ [0, 1[,where c(m) := γm
1−γ (E[|R(s0, ·)|] + E[|G(s0)|]) (us-

ing the stationarity of the state process) and where we have used
Lebesgue’s Dominated Convergence Theorem in the penultimate
step.

Hence, by (24) we have that:

E
[
J τ̂ , π̂ [s]

]
≤ max

π ∈Π
min
τ ∈T
E

[
Jτ ,π [s]

]
= val−[J ]. (25)

Hence putting (19) and (25) together gives:

val−[J ]
= max

π ∈Π
min
τ ∈T
E

[
Jτ ,π [s]

]
(26)

≥ E[J τ̂ , π̂ [s]] ≥ min
τ ∈T

max
π ∈Π
E[Jτ ,π [s]] (27)

= val+[J ]. (28)

After combining (28) with (14) we deduce the thesis. □

Theorem 5.7 proves the existence of a value and that we can
commute the max and min operators. Crucially, Theorem 5.7 estab-
lishes the existence of an equilibrium, the value of which is given
by J⋆. In turn, we can now establish the optimal strategies for each
player. To this end, we now define best-response strategies which
shall be useful for further characterising the equilibrium:

Definition 5.8. The set of best-response (BR) strategies for player
1 against the stopping time τ ∈ T (BR strategies for player II
against the control policy π ∈ Π) is defined by π̂ ∈ argmax

π ′∈Π
E[Jτ ,π ′[·]]

(resp., τ̂ ∈ argmin
τ ′∈T

E[Jτ ′,π [·]]).

The question of computing the value of the game remains. To
this end, we now prove the contraction mapping property of the
operator T . We then show that repeatedly applying T produces a
sequence that converges to the value.

Definition 5.9. The residual of a vectorV ∈ Vw.r.t the operator
T : V→ V is:

ϵT (V ) := ∥TV −V ∥. (29)

The following lemma is a required result for proving the contrac-
tion mapping property of the operator T .

LEMMA 5.10. The map P is non-expansive, that is:

∥PV1 − PV2∥ ≤ ∥V1 −V2∥. (30)

PROPOSITION 5.11. The operator T in (12) is a contraction.

PROOF. We wish to prove that:

∥T J −T J̄ ∥π ≤ γ ∥ J − J̄ ∥. (31)

Firstly, we observe that:




max
a∈A

{
Ras + γ

∑
s ′∈S

Pass ′ J
τ ,π [s ′],G(sk )

}
−

(
max
a∈A

{
Ras + γ

∑
s ′∈S

Pass ′ J̄
π [s ′], Ḡ(sk )

}) 





≤ γ max

a∈A






∑
s ′∈S

Pass ′
(
Jτ ,πs−1 [s

′] − J̄πs−1[s
′]
)






≤ γ


Jτ ,πs−1 − J̄πs−1



 , (32)

using Cauchy-Schwartz (and that γ ∈ [0, 1[) and (59). The result
follows after applying Lemma 5.2 and Lemma 5.3. □
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Prop. 5.11 underscores a fixed point property which is stated in
the following:

THEOREM 5.12. 1. The sequence (Tn J )∞n=0 converges (in L2).
2. There exists a unique function J⋆ ∈ L2 s.th.:

J⋆ = T J⋆ and lim
n→∞

Tn J = J⋆. (33)

PROOF. Part 1: We note that the contraction property of T (c.f.
Prop. 5.11) allows us to demonstrate that the game has a unique
fixed point to which a sequence (Tn J )∞n=0 converges (in L2). In par-
ticular, by Prop. 5.11 we have that ∥T 2 J −T J ∥ ≤ γ ∥T J − J ∥ which
proves that the sequence (Tn J )∞n=0 converges to a fixed point.
Part 2: We observe that the fixed point is unique since if ∃J ,M ∈ L2
s.th. T J = J and TM = M we find that ∥M − J ∥ = ∥TM − T J ∥ =
γ ∥M − J ∥, so that M = J (since γ ∈ [0, 1[) which gives the desired
result.

Adopting notions in dynamic programming, denote by:

Tn J [s] = min
τ ∈T

max
π0,π1, ...,πn−1

E


{n−1∧τ }∑

t=0
γ tR(st ,at ) + γn J (sn∧τ )

 .
We begin the proof by invoking similar reasoning as (21) - (23) to
deduce that:

E
[
J τ̂ , π̂ [s]

]
≤ min

τ ∈T
E

[
Jτ∧n, π̂ [s]

]
+

γn

1 − γ
c,

where c := (E[|R(s0, ·)|] + E[|G(s0)|]).
Hence,

Tn J [s] ≤ max
π ∈Π

min
τ ∈T
E

[
Jτ ,π [s]

]
+

γn

1 − γ
c (34)

= J⋆[s] + γn

1 − γ
c . (35)

By analogous reasoning we can deduce that:

Tn J [s] ≥ min
τ ∈T

max
π ∈Π
E

[
Jτ ,π [s]

]
− γn

1 − γ
c (36)

= J⋆[s] − γn

1 − γ
c . (37)

Putting (35) and (37) together implies:

J⋆[s] − γn

1 − γ
c ≤ Tn J [s] ≤ J⋆[s] + γn

1 − γ
c . (38)

By Lemma 5.6, i.e. invoking the monotonicity and constant shift
properties of T , we apply T to (38) and preserve the inequalities:

T J⋆[s] − γn

1 − γ
c ≤ Tn+1 J [s] ≤ T J⋆[s] + γn

1 − γ
c . (39)

After taking the limit in (39) and, using the sandwich theorem of
calculus, we deduce the result. □

Theorem 5.12 establishes the existence of a fixed point ofT . Cru-
cially, it underpins a value iterative method which we formally de-
velop in Sec. 6.

Definition 5.13. The pair (τ̂ , π̂ ) ∈ T× Π is a saddle point equi-
librium iff ∀s ∈ S:

J τ̂ , π̂ [s] = max
π ∈Π

J τ̂ ,π [s] = min
τ ∈T

Jτ , π̂ [s]. (40)

A saddle point equilibrium therefore defines a strategic configu-
ration in which both players play their BR strategies.

PROPOSITION 5.14. The pair (τ̂ , π̂ ) ∈ T× Π consists of BR
strategies and constitutes a saddle point equilibrium.

By Prop. 5.14, when the pair (τ̂ , π̂ ) is played, each player exe-
cutes its BR strategy in response to their opponent. In the context
of the problem in Sec. 2, the strategic response induces risk min-
imising behaviour by the controller.

PROOF. Prop. 5.14 follows from the fact that if either player
plays a Markov strategy then their opponent’s best-response is also
Markovian. Moreover, by Theorem 5.12, τ̂ is a BR strategy for
player 2 (recall Definition 5.8). By Theorem 5.7 (commuting the
max and min operators) we observe that π̂ is a BR strategy for
player 1. □

We now turn to proving the existence and characterising the opti-
mal stopping time for player 2. The following result establishes its
existence.

THEOREM 5.15. There exists an F-measurable stopping time:

τ̂ = min
{
k ∈ T

���G(sk ) ≤ mink ∈Tmax
π ∈Π

Jk,π [sk ]
}
,a.s .

Theorem 5.15 establishes the existence and characterises the player
2 optimal stopping time. The stopping time τ̂ is a best-response for
player 2 against the equilibrium policy played by player 1. The the-
orem plays a vital role in the robust optimal stopping problem of
Sec. 4.

PROOF. For anym ∈ N we have that:

max
π ∈Π

Jτ ,π [s]≥ max
π ∈Π

Jτ∧m,π [s] −
∞∑

t=m
γ tmax

π ∈Π
(|R(st ,at )| + |G(st )|) .

(41)

We now apply the min operator to both sides of (41) which gives:

min
τ ∈T

max
π ∈Π

Jτ ,π [s]

≥ min
τ ∈T

max
π ∈Π

Jτ∧m,π [s] −
∞∑

t=m
γ tmax

π ∈Π
(|R(st ,at )| + |G(st )|) .

(42)

After taking expectations, we find that:

E

[
min
τ ∈T

max
π ∈Π

Jτ ,π [s]
]

≥ E
[
min
τ ∈T

max
π ∈Π

Jτ∧m,π [s]
]
−

∞∑
t=m

γ tE

[
max
π ∈Π

(|R(st ,at )| + |G(st )|)
]
.

(43)

Now by Jensen’s inequality and, using the stationarity of the state
process (recall the expectation is taken under π ) we have that:

E

[
max
π ∈Π

(|R(st ,at )| + |G(st )|)
]

≥ max
π ∈Π
E [(|R(st ,at )| + |G(st )|)] (44)

= E[|R(s0, ·)|] + E[|G(s0)|]. (45)
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By standard arguments of dynamic programming, the value of the
game with horizon n can be obtained from n iterations of the dy-
namic recursion; in particular, we have that:

min
τ ∈T

max
π ∈Π

Jτ∧m,π [s] = TmG(s). (46)

Inserting (45) and (46) into (43) gives:

E

[
min
τ ∈T

max
π ∈Π

Jτ ,π [s]
]
≥ E

[
TmG(s)

]
− c(m)

= lim
m→∞

[
E

[
TmG(s)

]
− c(m)

]
= E

[
J τ̂ , π̂ [s]

]
, (47)

where c(m) := γm
1−γ (E[|R(s0, ·)|] + E[|G(s0)|]) so that lim

m→∞
c(m) = 0.

Hence, we find that:

E
[
J τ̂ , π̂ [s]

]
≤ E

[
min
τ ∈T

max
π ∈Π

Jτ ,π [s]
]
. (48)

The result follows since G(sτ ) = Jτ , ·[sτ ] by definition of G. □

Having proved the existence of the optimal stopping time τ⋆, by
Theorem 5.15 and Theorem 5.7, we find the following:

THEOREM 5.16. Let τ̂ be the player 2 optimal stopping time
defined in (5.15) and let τ⋆ be the optimal stopping time for the
robust OSP (c.f. (3)) then τ⋆ = τ̂ .

Theorem 5.16 establishes an equivalence between the robust OSP
and the SG of control and stopping. Computing the optimal stop-
ping time of the SG yields a solution to the robust OSP.

6 SIMULATION-BASED VALUE ITERATION
We now develop a simulation-based value-iterative scheme. We show
that the method produces an iterative sequence that converges to the
value of the game from which the optimal controls can be extracted.
The method is suitable for environments in which the transition
model and reward functions are not known to either player. Our ap-
proach is related to approximated dynamic programming methods
[5]. However, our problem requires generalisation to an SG involv-
ing a controller and stopper which alters the proofs throughout.

The fixed point property of the game established in Theorem 5.12
immediately suggests a solution method for finding the value. In
particular, we may seek to solve the fixed point equation (FPE) J⋆ =
T J⋆. Direct approaches at solving the FPE are not generally fruitful
as closed solutions are typically unavailable.

To compute the value function, we develop an iterative method
that tunes weights of a set of basis functions {φk : Rp → R|k ∈
1, 2, . . .D} to approximate J⋆ through simulated system trajectories
and associated costs. Algorithms of this type were first introduced
by Watkins [29] as an approximate dynamic programming method
and have since been augmented to cover various settings. Therefore
the following can be considered as a generalised Q-learning algo-
rithm for zero-sum controller stopper games.

Let us denote by Φr :=
∑D
j=1 r (j)φ j an operator representation

of the basis expansion. The algorithm is initialised with weight vec-
tor r0 = (r0(1), . . . , r0(P))′ ∈ Rd . Then as the trajectory {st |t =
0, 1, 2, . . .} is simulated, the algorithm produces an updated series
of vectors {rt |t = 0, 1, 2, . . .} by the update:

rt+1 = rt + γφ(st )
(
max
a∈A

Rast + γ min {(φrt )(st+1),G(st+1)} − (φrt )(st )
)
.

Theorem 6.1 demonstrates that the method converges to an ap-
proximation of J⋆. We provide a bound for the approximation error
in terms of the basis choice.

We define the functionQ⋆ which the algorithm approximates by:

Q⋆(s) = max
a∈A

Ras + γP J
⋆, ∀s ∈ S (49)

We later show thatQ⋆ serves to approximate the value J⋆. In par-
ticular, we show that the algorithm generates a sequence of weights
rn that converge to a vector r⋆ and that Φr⋆, in turn approximates
Q⋆. To complete the connection, we then provide a bound between
the outcome of the game when the players use controls generated
by the algorithm.

First, we introduce our player 2 stopping criterion which now
takes the form:

τ̂ = min{t |G(st ) ≤ Q⋆(st )} (50)

We define a orthogonal projection Π and the function F by:

ΠQ := argmin
Q̄ ∈{Φr |r ∈Rp }

∥Q̄ −Q ∥, (51)

FQ := max
a∈A

Ras + γP min{G,Q}. (52)

We now state the main results of the section:

THEOREM 6.1. Under (49), rn converges to r⋆ where r⋆ is the
unique solution: ΠF (Φr⋆) = Φr⋆, a.e .

THEOREM 6.2. Let τ̂ = min
{
k ∈ T

���G(sk ) ≤ (Φr⋆)(sk )
}
, then

the following hold:

1.


Φr⋆ −Q⋆



 ≤
(√

1 − γ 2
)−1 

ΠQ⋆ −Q⋆



 ,
2. E

[
J⋆[s] − J τ̃ , π̃ [s]

]
≤ 2[

(1−γ )
√
1−γ 2)

] 

ΠQ⋆ −Q⋆


.

Theorem 6.2 says the error bound in algorithm approximation of
the value is determined by the goodness of the projection.

CONCLUSION
In this paper, we tackled the problem of risk within an RL setting
in which the controller seeks to obtain a fault-tolerant control that
is robust to catastrophic failures. To formally analyse the problem
and characterise the optimal behaviour, we performed an in-depth
analysis of a stochastic game (SG) of control and stopping. We es-
tablished the existence of an equilibrium value then, using a con-
traction mapping argument, showed that the game can be solved
by iterative application of a Bellman operator. We proved that the
method leads to an approximate dynamic programming algorithm
so that the game can be solved by simulation. By proving an equiv-
alence between the SG and robust optimal stopping problems, we
showed that the method developed in the paper serves to compute
solutions to optimal stopping problems in worst-case scenarios.
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SUPPLEMENTARY MATERIAL
APPENDIX
ADDITIONAL LEMMATA
The following estimates provide bounds on the value J⋆ which we
use later in the development of the iterative algorithm. We defer the
proof of the results to the appendix.

LEMMA B.4. LetT : V→ Vbe a contraction mapping in ∥ · ∥
and let V⋆ be a fixed point so that T J⋆ = J⋆ then there exists a
constant c ∈ [0, 1[ s.th:

∥ J⋆ − J ∥ ≤ (1 − c)−1ϵT (J ). (53)

LEMMA B.5. Let T1 : V → V,T2 : V → V be contraction
mappings and suppose there exists vectors J⋆1 , J

⋆
2 s.th T1 J⋆1 = J⋆1

and T2 J⋆2 = J⋆2 (i.e. J⋆1 , J
⋆
2 are fixed points w.r.t T1 and T2 respec-

tively) then ∃c1, c2 ∈ [0, 1[ s.th:

J⋆1 − J⋆2


 ≤ (1 − {c1 ∧ c2})−1

(
ϵT1 (J ) − ϵT2 (J )

)
.

PROOF OF RESULTS
Proof of Lemma 5.1.

PROOF. We begin by noting the following inequality for any f :
V× V → R,д : V× V → R s.th. f ,д ∈ L we have that for all
b ∈ V:����max

a∈V
f (a,b) −max

a∈V
д(a,b)

���� ≤ max
a∈V

| f (a,b) − д(a,b)| (54)

From (54) we can straightforwardly derive the fact that for any b ∈
V: ����min

a∈V
f (a,b) − min

a∈V
д(a,b)

���� ≤ max
a∈V

| f (a,b) − д(a,b)| (55)

(this can be seen by negating each of the functions in (54) and using
the properties of the max operator).

Assume that for any b ∈ V the following inequality holds:

max
a∈V

| f (a,b) − д(a,b)| ≤ c (56)

Since (55) holds for any b ∈ V and, by (54), we have in particular
that ����max

b ∈V
min
a∈V

f (a,b) −max
b ∈V

min
a∈V

д(a,b)
����

≤ max
b ∈V

����min
a∈V

f (a,b) − min
a∈V

д(a,b)
����

≤ max
b ∈V

max
a∈V

| f (a,b) − д(a,b)| ≤ c (57)

whenever (56) holds which gives the required result. □

Proof of Lemma 5.6

PROOF. The proof uses an application of Lemma 5.2.
Part 2 immediately follows from the properties of the max and

min operators. It remains only to prove part 1.

We seek to prove that for any s ∈ S, if J ≤ J̄ then

min
τ ∈T

{
max
a∈A

Ras + γ
∑
s ′∈S

Pass ′ J
τ ,π [s ′],G(Sτ )

}
− min
τ ∈T

{
max
a∈A

Ras + γ
∑
s ′∈S

Pass ′ J̄
π [s ′],G(Sτ )

}
≤ 0.

We begin by firstly making the following observations:
1. For any x ,y,h ∈ V

x ≤ y =⇒ min{x ,h} ≤ min{y,h}. (58)

2. For any f ,д,h ∈ L2����max
x ∈V

f (x) − max
x ∈V

д(x)
���� ≤ max

x ∈V
| f (x) − д(x)| (59)

Assume that J ≤ J̄ , then we observe that

max
a∈A

{
Ras + γ

∑
s ′∈S

Pass ′ J
τ ,π [s ′]

}
−max

a∈A

{
Ras + γ

∑
s ′∈S

Pass ′ J̄
π [s ′]

}
.

≤ γ max
a∈A

{∑
s ′∈S

Pass ′
(
Jτ ,π [s ′] − J̄π [s ′]

)}
= γ

(
(P J ) −

(
P J̄

) )
≤ J − J̄ ≤ 0,

where we have used (59) in the penultimate line. The result imme-
diately follows after applying (58). □

Proof of Lemma 5.10.

PROOF. The proof is standard, we give the details for the sake
of completion. Indeed, using the Tonelli-Fubini theorem and the
iterated law of expectations, we have that:

∥P J ∥2 = E
[
(P J )2[s]

]
= E

(
[E [J [s1]|s])2

]
≤ E

[
E

[
J2[s1]|s

] ]
= E

[
J2[s1]

]
= ∥ J ∥2,

where we have used Jensen’s inequality to generate the inequality.
This completes the proof. □

Proof of Lemma B.4.

PROOF. The proof follows almost immediately from the triangle
inequality, indeed for any J ∈ L2:

∥ J⋆ − J ∥ = ∥T J⋆ − J ∥ ≤ γ ∥ J⋆ − J ∥ + ∥T J − J ∥ (60)

where we have added and subtracted T J to produce the inequality.
The result then follows after inserting the definition of ϵT (J ). □

Proof of Lemma B.5.

PROOF. The proof follows directly from Lemma B.4. Indeed, we
observe that for any J ∈ L2 we have

∥ J⋆1 − J⋆2 ∥ ≤ ∥ J⋆1 − J ∥ + ∥ J⋆2 − J ∥ (61)

where we have added and subtracted J to produce the inequality.
The result then follows from Lemma B.4. □
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The proofs of the results in Sec. 9 are constructed in a similar
fashion that in (Bertsekas, 2008) (approximate dynamic program-
ming). However, the analysis incorporates some important depar-
tures due to the need to accommodate the actions of two players
that operate antagonistically.

We now prove the first of the two results of Sec. 9.
Proof of Theorem 6.1.

PROOF. We firstly notice the construction of τ̂ given by

τ̂ = min{t |G(st ) ≤ Q⋆}, (62)

is sensible since we observe that

min{t |G(st ) ≤ J⋆}
=min{t |G(st ) ≤ min{G(st ),Q⋆(st )}
=min{t |G(st ) ≤ Q⋆}.

Result 1
Step 1 Our first step is to prove the following bound:

FQ − FQ̄



 ≤ γ


Q − Q̄



 . (63)

PROOF.



max
a∈A

Ras + γP min{G,Q} −
(
max
a∈A

Ras + γP min{G, Q̄}
)





= γ


P min{G,Q} − P min{G, Q̄}




≤ γ



min {G,Q} −min
{
G, Q̄

}


≤ γ



Q − Q̄


 .

which is the required result. □

Step 2
Our next task is to prove that the quantity Q⋆ is a fixed point of F
and hence we can apply the operator F to achieve the approximation
of the value.

PROOF. Using the definition of T (c.f. (13) we find that:

J⋆ = T J⋆ ⇐⇒ max
a∈A

Ras + γP J
⋆

= max
a∈A

Ras + γP min
{
max
a∈A

Ras + γP J ,G

}
⇐⇒
Q⋆ = max

a∈A
Ras + γP min

{
Q⋆,G

}
⇐⇒

Q⋆ = FQ⋆.

□

Step 3
We now prove that the operator ΠF is a contraction on Q , that is the
following inequality holds:

ΠFQ − ΠFQ̄



 ≤ γ


Q − Q̄



 .
PROOF. The proof follows straightforwardly by the properties of

a projection mapping:

ΠFQ − ΠFQ̄


 ≤



FQ − FQ̄


 ≤ γ



Q − Q̄


 .

□

Step 4



Φr⋆ −Q⋆


 ≤ 1√

1 − γ 2



ΠQ⋆ −Q⋆


 . (64)

The result is proven using the orthogonality of the (orthogonal) pro-
jection and by the Pythagorean theorem. Indeed, we have that:

PROOF.

Φr⋆ −Q⋆


2 = 

Φr⋆ − ΠQ⋆∥2 + ∥ΠQ⋆ −Q⋆



2
=



ΠFΦr⋆ − ΠQ⋆


2 + 

ΠQ⋆ −Q⋆



2
=



ΠFΦr⋆ − ΠQ⋆


2 + 

ΠQ⋆ −Q⋆



2
≤ γ 2



Φr⋆ −Q⋆


2 + 

ΠQ⋆ −Q⋆



2 .
Hence, we find that

Φr⋆ −Q⋆



 ≤ 1√
1 − γ 2



ΠQ⋆ −Q⋆


 ,

which is the required result. □

Result 2

E
[
J⋆[s]

]
− E

[
J τ̃ , π̃ [s]

]
≤ 2

[(1 − γ )
√
1 − γ 2]

∥ΠQ⋆ −Q⋆∥. (65)

PROOF. The proof by Jensen’s inequality, stationarity and the
non-expansive property of P . In particular, we have

E
[
J⋆[s]

]
− E

[
J τ̃ , π̃ [s]

]
= E

[
P J⋆[s]

]
− E

[
P J τ̃ , π̃ [s]

]
≤

���E [
P J⋆[s]

]
− E

[
P J τ̃ , π̃ [s]

] ���
≤ ∥P J − P J τ̃ , π̃ ∥. (66)

Inserting the definitions of Q⋆ and Q̃ into (66) then gives:

E
[
J⋆[s]

]
− E

[
J τ̃ , π̃ [s]

]
≤ 1

γ
∥Q⋆ − Q̃ ∥. (67)

It remains therefore to place a bound on the term ∥Q⋆ − Q̃ . We
observe that by the triangle inequality and the fixed point properties
of F on Q and F̃ on Q̃ we have

∥Q⋆ − Q̃ ∥ ≤ ∥Q⋆ − F (Φr⋆)∥ + ∥Q̃ − F (Φr⋆)∥ (68)

≤ γ
{
∥Q⋆ − Φr⋆∥ + ∥Q̃ − Φr⋆∥

}
(69)

≤ γ
{
2∥Q⋆ − Φr⋆∥ + ∥Q⋆ − Q̃ ∥

}
. (70)

So that:

∥Q⋆ − Q̃ ∥ ≤ 2γ
1 − γ

∥Q⋆ − Φr⋆∥. (71)

The result then follows after substituting the result of step 4 (64).
□

Let us now define the following quantity:

HQ(s) :=
{
G(s) if G(s) ≤ (Φr⋆)(s)
Q(s) otherwise,

(72)
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and

F̃Q := max
a∈A

Ras + γPHQ . (73)

Step 5 

F̃Q − F̃Q̄


 ≤ γ



Q − Q̄


 (74)

PROOF.

F̃Q − F̃Q̄


 = 



max

a∈A
Ras + γPHQ −

(
max
a∈A

Ras + γPHQ̄

)




= γ



PHQ − PHQ̄




≤ γ


HQ − HQ̄




= γ



min{G,Q} −min{G, Q̄}




≤ γ


Q − Q̄



 .
We now prove that Q̃ = max

a∈A
Ras + γP J

π , τ̃ is a fixed point.

HQ̃ = H

(
max
a∈A

Ras + γP J
π , τ̃

)
=

{
G(s) if G(s) ≤ (Φr⋆)(s)
max
a∈A

Ras + γP J
π , τ̃ otherwise

= Jπ , τ̃

□

Let us now define the following quantity:

s(z, r ) := φ(s)
(
max
a∈A

Ras + γ min {(Φr )(y),G(y)} − (Φr )(s)
)
.

Additionally, we define s̄ by the following:

s̄(z, r ) := E [s(z0, r )] .
The components of s(z, r ) are then given by:

sk ≡ E
[
φk (s)

(
max
a∈A

Ras + γ min {(φr )(s),G(s)} − (φr )(s)
)]
.

We now observe that sk can be described in terms of an inner prod-
uct. Indeed, using the iterated law of expectations we have that

sk ≡ E
[
Φk (s)

(
max
a∈A

Ras + γ min {(Φr )(s),G(s)} − (Φr )(s)
)]

= E

[
Φk (s)

(
max
a∈A

Ras + γE [min {(Φr )(s),G(s)} |s] − (Φr )(s)
)]

= E

[
Φk (s)

(
max
a∈A

Ras + γP min {(Φr )(s),G(s)} − (Φr )(s)
)]

= ⟨Φk , F (Φr ) − F (Φr )⟩ .
□

Proof of Theorem 6.2

Step 5 enables us to use classic arguments for approximate dynamic
programming. In particular, following step 5, Theorem 6 follows
directly from Theorem 2 in (Tsitsiklis & Van Roy, 1999) with only
a minor adjustment in substituting the max operator with min.
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