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ABSTRACT
In multiagent blind tournaments, many agents compete at an in-
dividual game, unaware of the performance of the other agents.
When all agents have completed their games, the agent with the
best performance—for example, the highest score, or greatest dis-
tance, or fastest time—wins the tournament. In stochastic games,
an obvious and time honoured strategy is to maximize expected
performance. In tournaments with many agents, however, the top
scores may be far above the expected score. As a result, maximizing
expected score is not the same as maximizing the chance of winning
the tournament. Rather, a “riskier” strategy, which increases the
chance of obtaining a top score while possibly sacrificing some
expected score, may offer a better chance of winning. In this paper,
we study how an agent should optimally adapt its strategy based on
the size of the tournament in which it is competing. Our solution
involves first approximating the agent’s pool of opponents as a
collection of known or estimated strategies. Second, score distribu-
tions are computed for those strategies, and the distributions are
convolved to obtain a distribution for the maximum score of the
agent’s opponents. Finally, a strategy that maximizes the chance of
exceeding the opponents’ scores is computed. As a demonstration,
we study optimal tournament-size adaptation in online Yahtzee
tournaments involving as few as one and as many as ten thousand
opponents. We find that strategies change dramatically over that
range of tournament sizes, and that in large tournaments, an agent
adopting the optimally risky strategy can nearly double its chance
of winning.
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1 INTRODUCTION
In many games, agents compete directly against each other and
make many tactical and strategic decisions based on their knowl-
edge and observations of their opponents [13, 14, 17]. In other
games, however, the agents perform individually, and winning is
based on which agent performs the best. Examples include some
types of auctions [11], certain game shows, applying for a job or
an exclusive fellowship or a grant, and the original motivation
for the present work, massively multiagent online tournaments.
When many individuals are competing, the bar for success—say, the
winning game score in a tournament—is naturally higher. Thus, al-
though each agent is playing individually, an intelligent agent must
adapt its strategy based on, at the very least, the size of tournament
in which it is competing.

Our specific motivation for the present study was the online
Yahtzee with Buddies game. For those not familiar with the game of
Yahtzee, we describe it in detail below. Briefly, it is a turn-based dice
game in which agents get points for different combinations of dice.
When humans play Yahtzee with real dice, they can see each others’
rolls and scores, and may make strategic decisions based on that
information. The Yahtzeewith Buddies app has a similar one-on-one
mode of play, but it also offers tournament play. In tournament play,
each agent plays a game alone, and when all agents have completed
their games, the agent with the highest score wins. The app offers
tournaments with as few as two other agents and daily tournaments
with an unlimited number of agents (typically around ten thousand).
In playing such tournaments, it rapidly becomes obvious that the
winning strategy for a small tournament differs from the winning
strategy for a large tournament. Large tournaments demand risky
play, because the score needed to win a large tournament can
be exceedingly high. Thus, we became interested in the general
phenomenon of risk-taking in tournaments, and how optimal play
must adapt to the size of the tournament.

Of course, there has been extensive study of risk, risk-reward
trade-offs, and related concepts in fields such as game theory, deci-
sion theory, and economics [5, 9]. In investment theory, portfolio
management is often concerned with the problem of growing in-
vestments while minimizing risk. For any individual investment,
however, risk and reward are often viewed as going together—the
only way of achieving a high potential (or expected) payoff, is to
accept the possibility of substantial loss as well. This is related to
the notion of risk we observe in tournament games. Maximizing the
chance of winning a large tournament necessarily means accepting
the possibility of one’s game coming out very poorly. However, we
are not aware of prior work specifically on the question of optimal
risk as a function of the number of competing agents, and certainly
not in the context of Yahtzee.

Prior work on Yahtzee has mostly focused on the problem of
computing strategies that maximize expected score. Optimal strate-
gies were computed independently by Verhoeff [19], Woodward
[20], and Glenn [8]. Cremers considered the problem of how to
maximize the chance of beating any given score threshold S [6].
Implicitly, this creates a similar “optimal risk” problem to the one
we study, in the sense that aiming for high S requires taking greater
risks. Our parameterization in terms of the number of opponent
players, however, results in a different problem. Firstly, the neces-
sary “winning threshold" is not obvious as a function of the number
of opponents. Further, as we will show in detail below below, win-
ning score distributions are complex and not well approximated by
a single “winning threshold." To our knowledge, only Pawlewicz
[15] has seriously studied a multi-agent version of Yahtzee, with



a focus on beating either one or a collection of opponents. They
explored heuristic strategies for winning in multiplayer games. In
contrast, we focus on computing optimal strategies for winning
blind Yahtzee tournaments, and study how the strategy changes as
a function of the number of competitors.

In this paper, we propose a general approach to defining optimal
agent behaviour in multiagent blind tournaments. To achieve maxi-
mum generality, we sought to minimize the assumptions made by
our approach. In its simplest form, we require only: (1) that the
rules of the game are known; (2) that playing the game results in a
discrete-valued score; (3) that the single-agent version of the game
can be solved optimally for any terminal objective function that
depends on score; and (4) that the number of opposing agents in
the tournament is known. Our solution concept also allows the
agent to have models of the opposing agents’ strategies (as in for
example [2, 4, 7]). The organization of this paper is a follows. First,
we define multiagent blind tournament games. Second, we lay out
our solution strategy. Third, we define the rules of our example
domain, Yahtzee. Fourth, we describe our dynamic programming ap-
proach to compute optimal Yahtzee strategies, which is non-trivial
as Yahtzee has a challengingly-large state space. Finally, we present
empirical data from the online game alongside optimal strategies
for different sizes of Yahtzee tournaments. We emphasize how opti-
mal strategies adapt to different tournament sizes, and in particular,
how higher risk play is optimal in larger tournaments.

2 DEFINITIONS AND PROBLEM STATEMENT
Wedefine a single-agent game to be a tupleG = (G, S,A,A, P ,д0,T ),
where:

• G = {д1, . . . ,дl } is a set of possible game states,
• S : G → ℜ defines the agents score in every game state,
• A = {a1, . . . ,an } is a set of possible agent actions,
• A(д) : G 7→ A specifies the allowed agent actions in every
game state,

• P : G × A × G 7→ [0, 1] is the transition function, where
P(д,a,д′) gives the probability that game state д′ follows
when an agent takes action a ∈ A(д) from game state д,

• д0 ∈ G is the initial game state, and
• T ⊂ G is a nonempty set of terminal or end game states.
From these states, no further actions are allowed and no
game state transitions are possible.

A game is similar to a Markov Decision Process (MDP) [16], but it
lacks an explicit reward or cost function. The score component of
the game state can be viewed as one notion of reward. However, we
will not be assuming that the goal is to maximize the expected score.
Indeed, the idea central to this paper is that maximizing expected
score can be quite different from maximizing the chance of winning
a tournament.

A policy π maps every game state д ∈ G to either a single action
allowed in that game state, or to a distribution over such actions.
Whether the policy is deterministic or stochastic, we let π (д,a)
denote the probability of taking action a in game state д.

A tournament describes a situation in which one or more agents
play statistically independent instances of the same game G. We
assume for simplicity that every agent that competes in the tourna-
ment completes its game, and thus obtains a final score. (However,

it is straightfoward to extend our framework to allow for some
agents not completing their games.) If there is a single agent with a
final score higher than all other agents’ final scores, then that agent
is declared the winner of the tournament. Otherwise, there is no
winner.

In general, when an agent is playing in a tournament, the optimal
strategy may depend on who else is playing in the tournament and
what their strategies are. This information may not be available,
and researchers in game theory have proposed solution concepts,
such as Nash equilibria, as both descriptive but also proscriptive
theories [14]. However, sometimes an agent does know who the
opponents are and what their strategies are—for instance through
some approximation or past experience—and this can be used to
adapt one’s strategy (e.g. [2, 4, 7]). This is the approach we take,
with the main novelty being our emphasis on how tournament size
influences strategy. Formally, the problem we seek to solve is: Find
a policy that maximizes the chance of winning a tournament of game
G against N other agents who follow known policies π1, . . . ,πN . In
the next section, we describe how this can be done in relatively
straightfoward fashion, at least conceptually. We then describe
our application of this solution strategy to tournament Yahtzee,
where computing with the large state spaces involved is the primary
challenge.

3 SOLUTION APPROACH
The first observation in our solution is that the combination of a
game G = (G, S,A,A, P ,д0,T ) and a policy π defines a Markov
process M = (G ′, P ′,д′0,T

′) in the following obvious way. The
state set is the same as the game states G ′ = G. The transition
probabilities are P ′(д,д′) =

∑
a∈A(д) π (д,a)P(д,a,д

′). The initial
state is the same, д′0 = д0. Finally, the terminal states are the same,
T ′ = T .

Second, as for any Markov process with an initial state and
terminal states, there is a (sub)probability distribution describing
the chance that the process eventually reaches each terminal state
[16]. More formally, if дt is a random variable denoting the state
of the process at time t , then the distribution of interest is µπ (д) =
limt→∞ P(дt = д) for each д ∈ T . We use the subscript π on µ to
make explicit the dependence of the terminal distribution on the
policy π . For a Markov process in general, this is a subprobability
distribution. We made the simplifying assumption above, however,
that all agents complete their games. More formally, this means
that π causes the game to reach a terminal state for certain, or at
least with probability one. In most games, no plausible policy leads
to an endless game, and in some games, such as Yahtzee, every
policy causes the game to end. The equations below, however, can
be generalized to account for policies causing unending games.

The third observation is that for an opponent agent’s policy π ,
the full distribution over terminal states of theMarkov process is not
important. We really only need to know the terminal distribution
over scores, as it is the scores that determine the winner of the
tournament. Thus, we abuse our notation for terminal distribution
somewhat to also define a terminal distribution over scores: µπ (s) =∑
д:S (д)=s µπ (д). Note that scores are real-valued, but that the set

of states G ′ (or G) is finite. Therefore, the final score distribution is
a discrete distribution.
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Now, recall that our problem statement involves one agent in a
tournament trying to beat N other agents, which play strategies
π1, . . . ,πN . Let o1, . . . ,oN be random variables describing the final
scores of those agents—their “outcomes". LetMj = maxji=1 oi be the
maximum score obtained by the first j ≤ N agents. To beat all the
other agents, our agent must score strictly greater thanMN . What
is the distribution ofMN ? It can readily be obtained by convolving
the individual agents’ score distributions recursively as follows.

Pr (M1 = s) = Pr (o1 = s) = µπ1 (s) .

For j > 1,
Pr (Mj = s)

= Pr

(
max
i=1...j

oi = s

)
= Pr (max(oj ,Mj−1) = s)

= Pr ((oj = s andMj−1 ≤ s) or (oj < s andMj−1 = s))

= µπj (s)

(∑
s ′≤s

Pr (Mj−1 = s
′)

)
+

(∑
s ′<s

µπj (s
′)

)
Pr (Mj−1 = s)

Having used these equations to compute Pr (MN = s), we can then
write the probability of our agent winning with a score of s as
W (s) = Pr (MN < s) =

∑
s ′<s Pr (MN = s

′).
Finally, we can state our approach to finding an optimal strategy

for playing the tournament.We construct aMarkov decision process
MDP = (G ′′,A′′,A ′′, P ′′,д′′0 ,T

′′,R) where:
• G ′′ = G is the set of possible (game) states,
• A′′ = A is the set of possible actions,
• A ′′ = A tells which actions are possible from which states,
• P ′′ = P : G ′′ ×A′′ ×G ′′ → [0, 1] is the transition function,
• д′′0 = д0 is the initial state,
• T ′′ = T are the terminal states,
• R is the reward function, defined as follows:

R(д,a,д′) =

{
W (S(д′)) if д < T ′′ and д′ ∈ T ′′

0 otherwise
In words, the MDP follows the same dynamics as a single game,
but upon completion of the game, the final reward is equal to
that chance that the final score obtained will win the tournament.
By construction, the policy that maximizes this expected reward
maximizes the chance of winning the tournament. Incidentally, this
construction also implies that a deterministic strategy is sufficient
for maximizing the chance of winning the tournament (as MDPs
are in general optimally solved by deterministic policies [16])—as
opposed to a stochastic policy, or history-based policy, or some
other more complicated construct. We next turn to Yahtzee, where
we provide some details of the game, and describe how we applied
the above solution concept to computing strategies for Yahtzee
tournaments.

4 YAHTZEE RULES
A single-agent Yahtzee game comprises 13 turns, and each turn
involves at least one and up to three rolls of dice. At the start of each
turn, the agent rolls five dice. The agent can then “assign" that roll
to one of 13 distinct scoring boxes (unless a box has already been
used). The points obtained depend on the dice faces showing as
well as the box, as summarized in Table 1. Alternatively, the agent

Table 1: Scoring rules for each of 13 scoring boxes in Yahtzee

Box Scoring rule Example
Ones 1 × no.

of ones → 2 points
Twos 2 × no.

of twos → 6 points
Threes 3 × no.

of threes → 0 points
Fours 4 × no.

of fours → 16 points
Fives 5 × no.

of fives → 5 points
Sixes 6 × no.

of sixes → 30 points
Three of Sum of dice
a kind if ≥ 3 match → 19 points
Four of Sum of dice
a kind if ≥ 4 match → 0 points
Full 25 if 2 match &
house 3 others match → 25 points
Small 30 if four dice
straight in series → 30 points
Large 40 if five dice
straight in series → 40 points
Yahtzee 50 if all five

dice match → 50 points
Chance Sum of dice

→ 20 points

can re-roll some or all of the dice. Then, there is another decision
to either assign the dice roll to a scoring box, or to re-roll some or
all of the dice yet again. If three rolls have been made, then the dice
roll must be assigned to one of the unused scoring boxes.

The total score for the game depends on the sum of the individual
box scores, but with two additional rules. First, if the sum of the
scores in the boxes Ones through Sixes it at least 63, then 35 bonus
points are awarded. Second, if the agent has already scored a Yahtzee
(worth 50 points), and if the agent rolls any subsequent Yahtzees
and assigns them to one of the scoring boxes, then an additional
50 points is awarded for each such Yahtzee. Such points do not
count towards the 63 bonus. If the agent “cancels" or “scratches"
the Yahtzee box, by assigning to it a roll in which all five dice do
not match, then any subsequent Yahtzees they may roll do not earn
the 50 additional points. Note that it is allowed to assign any roll
to any unused box, even if no points are obtained. In the official
Yahtzee rules, additional Yahtzees are worth 100 points, not 50.
However, we use 50 to be consistent with the online Yahtzee with
Buddies game. With these rules, the maximum obtainable score is
880, which comes from rolling a Yahtzee every turn, including a
Yahtzee of ones for the Ones box, a Yahtzee of twos for the Twos
box, and so on. The minimum score is five, which is obtained by
getting a zero in every box except chance, where one places a roll
of five ones (after scratching the Yahtzee box).
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5 STATE REPRESENTATION AND DYNAMIC
PROGRAMMING

The full state of a Yahtzee game is too large to be conveniently
represented explicitly. To see this, observe that the Ones box can be
in one of seven states: unused, or used with a score of between zero
and five. The Twos box can also be in one of seven states: unused,
or used with a score of 0, 2, 4, 6, 8 or 10. Similarly with the Threes
through Sixes boxes. The Three of a Kind box can be have 26 states:
unused, or usedwith a score of 0, or 7, 8, 9, . . . , 30. And so on. Leaving
the details to the reader, one can see that in total there are 76 · 26 ·
27 · 34 · 28 = 187, 313, 208, 264 possible joint states for the scoring
boxes. One must also account for the number of additional Yahtzees,
between zero and twelve, beyond the first Yahtzee. Although we
obviously cannot have as many as 12 additional Yahtzees in every
possible joint scoring box state—for example, if only 3 turns have
been played—we can naively bound the total number of states as
13 × 187, 313, 208, 264 = 2, 435, 071, 707, 432. Finally, there is the
matter of the dice. Accounting for symmetries, five six-sided dice
can show 252 distinct combinations. Given that the dice may be
unrolled, at the start of a turn, or show 252 combinations after one,
two or three rolls during a turn, the dice add 1 + 3 × 252 = 757
possibilities. This leads us to 1.843 quadrillion possible full Yahtzee
game states. If we required an 8-byte floating point number to store
the value of each game state—representing the chance of winning
the game, for example—this would equate to approximately 16
petabytes of storage. Such an amount is available on higher-end
computing clusters or data centers, as is the computing power
necessary to determine the values of those game states. However,
we adopt a more parsimonious representation.

Our game state representation can be divided into four main
components: 1) UsedState: indicating which scoring boxes have
been used; 2) TopScore: the sum of scores obtained so far in the
Ones through Sixes boxes, not counting any bonus; 3) BottomScore:
the sum of scores obtained so far from the other boxes, Three-of-a-
kind through Chance, including scores for any additional Yahtzees
beyond the first; 4) RollState: the state of the dice. The first com-
ponent, UsedState, comprises a binary indicator for each scoring
box except Yahtzee, indicating whether or not the box has been
used. For the Yahtzee box, we have a trinary value, indicating: un-
used, used but no Yahtzee scored, and used with a Yahtzee scored.
The distinction between the two notions of the Yahtzee box being
used are necessary because any future Yahtzees only accrue the
bonus if a Yahtzee was first scored in the Yahtzee box. There are
212 · 3 = 12288 distinct UsedStates. TopScore, so called because
the Ones through Sixes boxes are in the top half of a traditional
paper-based Yahtzee scoring sheet, is an integer ranging from zero
to 105, the latter achieved with five dice of the correct type being
scored in every box. BottomScore is an integer ranging from zero
to 740, the latter achieved with Yahtzees of sixes assigned to the
Three-of-a-kind, Four-of-a-kind and Chance boxes, any type of
Yahtzee assigned to the Full House, Small Straight, Large Straight
and Yahtzee boxes, and Yahtzees in all of the Ones through Sixes
boxes. As described above, the RollState is an integer ranging from
zero to 756, indicating whether the dice have not been rolled yet
(one possibility), or rolled once, twice or thrice.

In essence, then, we use four dimensional tables, indexed by
UsedState (0 to 12287), TopScore (0 to 105), BottomScore (0 to 740)
and RollState (0 to 756), to represent the values or optimal actions
associated to different game states. However, the maximum possible
TopScore and BottomScore values are not achievable in all Used-
States. So, we create a set of 12288 three dimensional tables, one
for each possible UsedState, and with TopScore and BottomScore
ranging over only their possible values depending on the scoring
boxes used in each UsedState. Two different UsedStates correspond
to a completed game, one where a Yahtzee has been scored and one
where Yahtzee has been canceled. For these two UsedStates, the
RollState only has one possible value—“unrolled" or “game over".
Our collection of tables has 100, 706, 855, 944 ≈ 100 billion entries.

The actions available to an agent in any of these game states is
based on the Yahtzee rules, as described in the previous section,
and the state transition probabilities follow what one would expect.
Rolling the dice results in no change in UsedState, TopScore or
BottomScore, but results stochastically in a new RollState. That
RollState will indicate that one additional roll has been taken. We
computed by straightforward enumeration the probabilities of dif-
ferent combinations of dice faces resulting based on the original
dice faces and which dice were being (re)rolled. Assigning a dice
roll to a score box results in a change in the UsedState (indicating
the box that was used), and may result in a change to TopScore, Bot-
tomScore or both (in the case that the agent rolls a bonus Yahtzee
and assigns it to one of the Ones through Sixes boxes). The RollState
resets to zero, indicating either an unrolled dice state at the start of
the next turn or that the game is over.

We implemented standard dynamic programming techniques to
calculate optimal policies, state values, and state probabilities [16],
for different possible reward functions, as will be described below.
More specifically, backwards dynamic programming was used to
compute state values and optimal actions for every game state,
starting with the terminal states. Then values of states where there
is one turn left were computed based on the terminal states values,
and so on. We scheduled the computations as one process per Used-
State on the Compute Canada cluster Frontenac, at the Centre for
Advanced Computing. Because the values of game states with dif-
ferent UsedStates but the same number of turns cannot depend on
each other, we scheduled the computations of all such UsedStates
to proceed in parallel. Only when all computations for a particular
number of turns are completed do we proceed to computations for
the previous turn. Once an optimal policy is computed, we then
perform a forward dynamic program to compute the probabilities
of different game states [16], culminating in a policy-dependent
distribution over terminal states, and hence a terminal score dis-
tribution. Allowing for some manual verification and restarting
of dropped processes, the entirety of one such computation took
approximately 1-2 weeks for a single choice of reward function.

6 EMPIRICAL WINNING-SCORE
DISTRIBUTIONS

To get a sense of how high scores are needed to win in multiagent-
blind Yahtzee tournaments of different sizes, we manually played
tournament games online, via the Yahtzee with Buddies gaming
app. This app allows agents to compete in tournaments of different
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sizes. Not all sizes of tournaments are available at all times. But
over time, we were able to accumulate 50 played games in 15-agent
tournaments, 25-agent tournaments and 50-agent tournaments. In
these games, we played a strategy of indefinite optimality—one
that we had developed through prior manual play, and which we
believe is “good" but not the best possible. As evidence that our
strategy is good, we won 5 of 50 15-agent tournaments, 3 of 50
25-agents tournaments, and 1 of 50 50-agent tournaments. All these
empirical win rates are at or above expected level if all agents were
acting optimally (or following any identical strategy). At the end
of these tournaments, the scores of the top-3 scoring agents are
revealed, including of course the winner, as well as ones’ own rank
among the agents. The app also offers two daily tournaments that
allow an unlimited number of agents. We also played 25 of each
of these tournaments. For these, we attempted to get the lowest
score possible. The reason for this is that, from the outcome of the
tournament, we could see the scores of the top-scoring agents, but
we could not see how many agents were competing. By scoring as
low as possible, often as little as 6-8 points in awhole game, we could
use our rank in the tournament standings as an approximation of
the number of agents that had competed. We found that one of the
two daily tournaments consistently had 5,000-6,000 agents, while
the other had 10,000-12,000. (The difference in the tournaments is in
the rewards for winning or placing high, which presumably effects
their desirability to players.) Figure 1 shows the empirical spread
of winning scores in tournaments of these different sizes. As one
would expect, winning scores generally increase as a function of
the number of agents in the tournament. The variability in winning
score decreases with tournament size. This is to be expected from
first principles, for example on the basis that the maximum of N
samples from a bounded distribution has variance that decreases
in N [1].

7 PLAY THAT MAXIMIZES EXPECTED SCORE
Next, we computed a policy that maximies the expected score. This
has been done several times before [8, 20], though not always with
the exact same rules, and to our knowledge, no one has previ-
ously exactly computed the distribution of scores for that optimal
policy. We did this by dynamic programming as described above,
choosing as terminal reward the game score, and with no (i.e. zero)
intermediate rewards. The maximum expected score achievable
is approximately 243.08. The black curve in Figure 2A shows the
probability distribution over final scores achieved by that policy.
It is interestingly complex, with many distinct components. The
components are mainly due to whether or not a Yahtzee is scored,
whether or not a large straight is scored, and so on. In contrast,
categories like Ones through Sixes, Three-of-a-kind, Four-of-a-kind,
and Chance, where one can score a wide range of values, tend to
contribute to the smoother aspects of the distribution.

Based on the score distribution of a single score-maximizing
agent, we calculated the distribution for the maximum score out of
10, 100, 1000, and 10,000 agents, as described in Section 3 (Figure
2A). The most obvious effect of increasing the number of competing
agents is that the distributions shift toward higher values. In a 10-
agent tournament, the median winning score is just under 300,
whereas it is approximately 500 when 10,000 agents are competing.
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Figure 1: Distributions of the winning (top) score in
multiagent-blind Yahtzee tournaments of different sizes,
based on manual play in the “New Yahtzee with Buddies"
app. For each tournament size, the minimum, 25th per-
centile, median, 75th percentile and maximum winning
scores across the sampled tournaments are shown.
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Figure 2: Score distributions for agents maximizing ex-
pected score, and the chances of winning tournaments
against them. (A) The probabilities of different scores when
a single agent plays the strategy that maximizes expected
score (MES), and the probabilities of different maximum
scores when 10, 100, 1000 or 10000 MES agents play statis-
tically independent games. (B) The chance of an individ-
ual agent winning a tournament against, 1, 10, 100, 1000, or
10000 opponent MES agents.
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Note that even in a 10,000 agent tournament, the distribution of
the highest score is still substantially bimodal. At these high scores,
agents are getting multiple Yahtzees, and the two modes in the
distribution are likely due to getting one more or one fewer Yahtzee.

Comparing Figures 1 and 2A, we note some discrepancy in es-
timated winning scores for tournaments of approximately 10,000
participants. Empirically, in the Yahtzee with Buddies tournaments,
the median winning score exceeds 550, more than 50 points higher
than our calculated median winning score for 10,000 expected-
score maximizing agents. There are two obvious possible reasons
for this. One is that participants in the online game are not playing
to maximize expected score, but are, intelligently, playing a more
risky strategy in order to increase the chance of winning. However,
another likely explanation is that the online game has a sort of
currency, “extra dice," which one can buy with real money or earn
in other ways on the app. One can spend a limited number of these
during the game to obtain extra rolls, which allows one to obtain
better scores. Our model does not account for this aspect of the
online game, which is absent in the Yahtzee box sets one can buy.
Regardless, in either the app or our calculations for tournaments of
expected-score-maximizing agents, greater numbers of agents lead
to higher winning scores, and this motivates the search for policies
that have a greater chance of obtaining such scores.

8 OPTIMAL TOURNAMENT PLAY AGAINST
EXPECTED-SCORE MAXIMIZING AGENTS

Finally, we turn to our central calculation, which is of policies that
maximize the chance of an agent winning a tournament where
all the other agents follow the strategy that maximizes expected
score (MES). We calculated policies for tournaments where there
are 1, 10, 100, 1000, or 10,000 other MES agents against whom
one is competing. In other words, we solved the Markov decision
process described in Section 3 five different times, with terminal
rewards given by the five different tournament-winning probability
functions shown in Figure 2B, which were derived from the distri-
butions shown in Figure 2A. Of course, there are other tournament
sizes we could have investigated, and other opponent strategies or
combinations of opponent strategies we could have investigated.
The single most obvious choice to us, however, was to investigate
tournaments where agents are maximizing expected score.

Shortly, we will present results on how optimal tournament poli-
cies differ from the MES policy. First, however, we present some
results on score distributions and chances of winning. Figure 3A
shows the chance of an agent winning in tournaments where all
other agents follow the MES strategy. To be clear, the agent fol-
lows a different strategy depending on the number of other MES
agents in the tournament, adapting its policy to suit the tourna-
ment. For comparison, we also plot the probability of a single MES
agent winning against the same numbers of other MES agents.
It is clear that as tournament size increases, the chance of either
a single MES agent or a tournament-adaptive agent winning de-
creases dramatically. Indeed, despite adapting to tournament size,
the chance of winning remains at approximately one divided by the
number of agents, although a growing gap can be seen between the
MES and tournament-adaptive agent as tournament size increases.
In Figure 3B we show the percentage increase in the chance of
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Figure 3: Statistics regarding an agent strategy that is op-
timal in tournaments against varying numbers of oppos-
ing agents that maximize their expected score (MES agents).
(A) The chances of one MES agent or one tournament-
adaptive agent winning in tournaments with different num-
bers of other MES agents. (B) The advantage enjoyed by a
tournament-adaptive agent, in terms of percentage increase
in chance of winning. (C) The mean and standard deviation
of the score distributions of agents optimized for tourna-
ments of different sizes.

winning by a tournament-adaptive agent versus the MES policy.
In small tournaments, there is relatively little advantage. But in
tournaments of 10,000 agents, the tournament-adaptive policy in-
creases the chance of winning by approximately 70%—a substantial
improvement. Figure 3C confirms that the tournament-adaptive
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agent achieves this by playing increasingly “risky" strategies as
tournament size increases. The expected score of this strategy de-
creases with tournament size, but the variance goes up enough to
increase the chance of obtaining extremely high scores, and thus
winning the tournament.

Figure 4 provides a visualization of the strategy employed by a
MES agent, and the optimal strategies against varying numbers of
MES agents. We recognize that the strategies themselves may be of
more interest to Yahtzee aficionados than to AI/agents researchers,
but we feel it is valuable to demonstrate concretely how optimal
strategies can change in multiagent tournaments of different sizes.
In our visualization, each strategy is represented by a grid of col-
ored rectangles, along with an additional strip just to the right of
the grid. Rows of the grid correspond to different boxes in which
one can score a dice roll: Ones, Twos, etc. Columns correspond to
the 13 turns of the game. The color of each rectangle is determined
as follows. The green intensity is proportional to the probability
of scoring successfully/well in that box on that turn, whereas red
intensity is proportional to the probability of cancelling/scoring
poorly in the box. For the boxes Ones through Sixes, we define
a successful score as one that includes three or more of the de-
sired die. (Getting three in each box allows one to get the upper
bonus of 35 points, although there are many other ways to achieve
63 points on top.) For Three-of-a-kind, Four-of-a-kind, Full-house,
Small Straight, Large Straight and Yahtzee, we consider any nonzero
score successful—that is, any dice roll that meets the scoring re-
quirements of the box. Scratching the box counts as unsuccessful.
For Chance, we consider a score of 18 or higher (corresponding to
more than the average score of 3.5 points per die) to be success-
ful. Thus, a red box indicates one that is likely to be scratched or
scored poorly on that turn, while a green box is likely to be scored
successfully on that turn. A yellow or orange box is somewhere
in the middle. Within each row, we scale the intensities so that
the maximum red or green intensity is 100%. Thus, different boxes
within the same row can be compared directly for color or intensity,
but one should not compare between rows nor between the plots
for different strategies. The strip to the right of each strategy’s grid
displays the total success or failure probability over the course of
the game.

First, we examine the MES strategy in some detail. As Figure
4 shows, that strategy is likely to succeed in the Twos through
Sixes boxes, and also Three-of-a-Kind, Full House, the straights,
and chance. The strategy has a respectable 33.46% change of scoring
a Yahtzee at some point during the game. Perhaps most surprising
is the high likelihood (89.67%) that the strategy will at some point
sacrifice the Four-of-a-Kind box. The strategy is likely to score
poorly in the Ones box (62.70%). A deficit in the Ones box is easily
made up in other places, and this is quite consistent with how most
agents play. When these plays are made are also interesting. The
Yahtzee box shows the strongest trend with time. Although one
cannot see because the colors are too dim, the strategy has about a
3-4% chance per turn of scoring a Yahtzee during the first five turns,
and virtually no chance of scratching the Yahtzee. However, as the
game approaches the final turn, the chance of scoring a Yahtzee
drops to 1.05% (in part, because of the chance that the box has
previously been scratched), while the chance of scratching Yahtzee
on the final turn is 21.68%. Clearly, the strategy holds out hope

of scoring a Yahtzee as long as it can, but will sacrifice the box if
necessary—even before the final turn. This may happen, for exam-
ple, if the low chance of a Yahtzee is outweighed by other important
game considerations, like obtaining the top bonus. Indeed, most
boxes have a rather low chance of being scored successfully if left
for the last turn.

Next, we consider the optimal strategies for winning against
different numbers of MES agents. We will not cover every strategy
in detail, but rather focus on trends as the number ofMES opponents
increases. The strategy against one MES opponent appears quite
similar to the MES strategy itself. Against greater numbers of MES
opponents, however, the strategy is quite different. Even against
just 10 other MES agents, it is very hard to win without a Yahtzee.
The strategies against 10 or more MES agents focus heavily on
getting one or more Yahtzees, so that the total chance in a game
is over 40% (with the exact percentage varying by the number of
opponents). As the number of opponents increases, the strategy
is also increasingly reluctant to scratch the Yahtzee box. Indeed,
against 1,000 or 10,000 opponents, the stategy will virtually only
ever scratch Yahtzee on the final turn. Another major change that
we see, especially against 100 or more opponents, is in how the
Four-of-a-kind box is played. Although the chance of getting a
Four-of-a-kind remains low, the box is not sacrificied so easily or so
early. Rather, it is kept open nearly as long as possible. Perhaps one
reason for this is that the strategies’ desperation to get a Yahtzee
makes getting a Four-of-a-kind more likely (e.g. 18.47% per game
in the 10,000 opponent strategy, versus 10.33% in the MES strategy).
This may also make sense because winning a game against such
large numbers of opponents typically requires multiple Yahtzees
in the same game. An extra Yahtzee can be scored in the Four-of-
a-kind box, where it gets points both for the numbers showing
on the dice and the 50 bonus points for the extra Yahtzee. Along
with the increased focus on getting Yahtzees, we see an increased
chance of scratching Large Straight and of scratching or scoring
below average on the Ones through Sixes boxes. Indeed, in the
10,000 opponent strategy, one can almost read off a priority list of
when boxes are to be sacrificed, with Large Straight often sacrificed
as early as turn 9, and the Sixes and Four a Kind second only to
Yahtzee in reluctance for sacrifice. In summary, we see dramatic
changes in the optimal single-agent strategy depending on how
many agents against which it is playing.

9 DISCUSSION
In this paper, we considered an agent playing a game in a tourna-
ment against many other agents, but without being able to observe
the performance of those other agents. We proposed an optimal
approach (under certain assumptions) to adapting an agent’s policy
for winning tournaments of different sizes, and demonstrated how
radically policies could change in the domain of Yahtzee, when
playing different numbers of opponents (Figures 3 and 4).

The distribution of the score-to-beat—that is, the highest score
out of all opponent agents—is central to finding the best tournament
policy. We proposed computing that distribution, and found that for
Yahtzee, that distribution can be quite complex, withmultiplemodes
(Figure 2). However, another possibility would be to estimate that
distribution empirically (as in Figure 1), if one has access to previous
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Figure 4: Comparison of optimal strategies for maximizing expected score (MES) and for maximizing the probability of win-
ning in tournaments against different numbers of MES agents. (See text for explanation of colored plots.)

tournament results. It is not clear how well that distribution needs
to be approximated, in order for the computed tournament policy
to be at or nearly optimal. It may be that for many games, getting
the right mean and variance is enough to generate nearly-optimal
tournament play. Empirical estimation of the tournament score-to-
beat distribution also avoids certain theoretical pitfalls. For example,
in our analysis of Yahtzee, we assumed that opponents maximize
expected score. In many tournaments, however, this is unlikely
to be the case. One reason is that strict optimization of expected
score is difficult. Another reason is that other opponent agents
may also realize the difference between playing to maximize score
and playing to win the tournament, and change their behaviour
accordingly. On the other hand, explicitly reasoning about other
agents’ strategies, and reasoning about them reasoning about our
agent’s strategy, and so on, also leads to difficulties [3]. An empirical
score-to-beat distribution neatly summarizes such effects without
making theoretical assumptions that may be hard to justify.

Some games are too complicated to compute optimal strategies
or exact score distributions. In that case, one might consider a
reinforcement learning approach [18] to first compute a good single-
agent policy. Then, one could use Monte Carlo sampling to estimate
the distribution of winning scores for any tournament size, and
finally use reinforcement learning again to compute a tournament
policy. Alternatively, one might try to learn a single strategy that
takes as input the game state and the tournament size, possibly
represented by a deep neural network [10, 12], and train it to play
tournaments of a variety of sizes. This would be very interesting
because it removes the need under our scheme of recomputing a
strategy for each distinct tournament size.

Another generalization of interest might be where the games the
agents play are not statistically independent. For example, some
human and AI-based tournaments use the same random seed for
each agent/player (or the same shuffle of the deck, etc.). This reduces
the influence of luck versus skill in determining the winner. In this

case, convolution calculations are not a valid way of computing
winning score distributions. Rather, Monte Carlo simulation of
whole tournaments might be a more accurate way of estimating
the score needed to win.
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