
Autonomous Distributed System using Graph Convolutional
Network

ABSTRACT
Realizing cooperation is a major goal in the study of a multi- agent
system. In this paper we propose a distributed graph convolutional
network (D-GCN) that estimates the macroscopic state. It Utilizes
uniform consensus algorithms and enables not only the estimation
(execution) but also learning to be executed asynchronously and in
a distributed manner. In addition, we propose the SwarmCNN,
which is a D-GCN consisting of a group of agents moving on a
plane. When a SwarmCNN is used, collective animal behaviors
such as herd formation arise from only the goal of reducing
predation risk without any pre-given fundamental behavior rules.

KEYWORDS
Graph convolutional neural network, Multi-agent reinforcement
learning, Distributed learning, Collective animal behavior

1 Introduction
Realizing cooperation is a major goal in study of a multi-agent
system consisting of a large number of autonomous agents, such as
cooperative control of multiple vehicles, a smart warehouse with
cooperation of multiple handling robots, control of traffic signals,
smart grid control, etc. [1–4]. One method for this is centralized
gathering of information of all agents in one place (central server),
deriving the optimum behavior of all agents, and notifying each
agent of the result [5]. However, as the number of agents increases,
gathering information from all agents to the central server and
deriving the optimal behavior of all agents become problematic in
terms of communication quantity and computational complexity.
Moreover, gathering information on all agents in one place may
raise privacy and/or security risk depending on the content of the
information [6].

Another method is distributed operation that instead of
gathering information on all agents in one place has each agent act
autonomously while exchanging information between neighboring
agents. In recent years there have been some efforts estimate the
macroscopic state of the entire system or to optimize the entire
behavior of the system in a distributed manner [7–9]. However,
none of those efforts has satisfied two requirements important for
practical use. First, each agent should operate completely
asynchronously without any synchronization mechanism. Second,
not only estimation (execution) but also learning should be done in
a distributed manner.

In this paper, we propose a distributed graph convolutional
network (D-GCN), in which each autonomous agent estimates the

macroscopic state of the whole system by asynchronously
communicating with neighboring agents. A D- GCN is based on the
graph convolutional neural network upon the agent network which
represents communicable relation among agents. Utilizing uniform
consensus algorithms, a D-GCN can perform not only execution
(forward propagation) but also learning (error backpropagation) in
a distributed and asynchronous manner.

In addition to that, we propose a SwarmCNN which is a D- GCN
applied to a group of agents moving in space. It will be shown that
a herd can be formed by a SwarmCNN controlling the movement
of agents.

2 Problem Statement
Let us consider a multi-agent system consisting of many agents.

There are no central controllers nor synchronization mechanism,
and each agent operates in a distributed and asynchronous manner.
Each agent receives a localized input from environment, i.e., the
input is different for each agent. In addition, each agent has its own
internal state.

Assume that each agent can communicate with specific agents.
Here, communication means that two agents perform the following
two operations:

1. each sending its own internal to the other, and
2. each updating its internal state based on the internal state of

the other.
These two processes are assumed to be executed instantaneously.
Although the frequency and timing of communication may differ
for each edge (pair of agents that can communicates with each
other) on the agent network, the communication frequency of every
edge is assumed to not be zero.

Let us consider the following two tasks that the entire system
should accomplish:

1. Regression (identification) of system evaluation function.

Each agent ought to estimate (regress) a system evaluation
function that depends on all the input describing the local
environments of the agents. Each agent performs estimation
independently, but the estimated values of all agents must
converge to the correct system evaluation function. There is
also a variational task that assuming the entire system have
several discrete states, each agent ought to identify the current
state of the entire system.

2. Optimization of system evaluation function (multi-agent
reinforcement learning, MARL).

Koji Fukuda
 Hitachi Kyoto University Laboratory,

 Center for Exploratory Research, Hitachi Ltd.,
 Kyoto, Japan

 koji.fukuda.jf@hitachi.com

Consider that each agent takes some actions based on its local
environmental input and internal state. It is assumed that the
combination of actions taken by all agents affects the future
input from the environment. Each agent ought to find the
optimum action that maximizes the future value of the system
evaluation function. This task is one of the typical forms of
multi-agent reinforcement learning (MARL).

3 Related Work

3.1 Graph Convolutional Network (GCN)
In recent years, the graph convolutional network (GCN) has
attracted attention as a method of deep learning for graph structures
[10–11]. It consists of stacking of multiple graph convolutional
layers (i.e., summing up the values of the adjacent nodes multiplied
by different weights for each edge type) and then applying a
nonlinear activation function such as a ReLU.

Applying GCN to the agent network of a multi agent system is
a natural idea. For example, [9] applied GCN to MARL of task 2
and confirmed the effectiveness. Although [9] adopted a paradigm
of centralized training and distributed execution, distributed
training is desirable for practical use.

3.2 Geometric Convolutional Neural Network
Conventional CNN for the image (grid network) uses, for example,
3 × 3 kernel filter, where different weights are applied to the pixels
in the eight directions of the horizontal and vertical diagonal
directions of the center pixel. For a graph convolutional network
upon the geometric graph (i.e., graphs drawn in the n-dimensional
space), it is a natural idea to change the weight of the convolution
filter of the GCN according to the relative geometric relationship
between the nodes. In [12], the weight is determined by the
gaussian mixture model (GMM) based on the relative position
(coordinates) of each node.

3.3 Uniform Consensus Algorithm
In task 1, the estimated value of the system evaluation functions of
every agent, which operates in distributed manner, needs to be the
same for all agents. Similarly, in order to realize distributed
learning in MARL with a GCN, it is necessary for all agents to
agree (converge to a uniform consensus) on learning parameters
such as shared weights of the GCN.

Let us focus on the following two algorithms for the uniform
consensus problem.

3.3.1 Average Consensus Algorithm. A well-known method of
forming a uniform consensus is the average consensus algorithm
[13–14]. Although there are many variants of the average
consensus algorithm, the basic idea is to distribute 𝑥௜ among agents
while keeping the sum of values 𝑥௜ held in each agent constant.
Since the sum of 𝑥௜ is always constant, the convergence value is the
average value of the initial values of 𝑥௜ . In the simplest average

agreement algorithm, when communicating between agent 𝑖 and
agent 𝑗, 𝑥௜ and 𝑥௝ are changed as follows

 𝑥௜
௧ାଵ = 𝑥௝

௧ାଵ =
ଵ

ଶ
൫𝑥௜

௧ + 𝑥௝
௧൯ . (1)

3.3.2 Average Consensus by Distributed ADMM. A distributed
ADMM (D-ADMM), which executes the alternating direction
method of multipliers (ADMM) algorithm in a distributed manner,
has been proposed [15–16]. A D-ADMM can solve the
optimization problem for all agents by considering the dual
problem of the optimization problem. In particular, by using a D-
ADMM to solve the following optimization problem, it is possible
to calculate the average value 𝑣 = 1/𝑁 ൫∑ 𝑥௜

ே
௜ୀଵ ൯ of the N values

𝑥௜ in a distributed and asynchronous manner

 𝑣 = argmin
{௩}

 ෍
1

2
(𝑥௜ − 𝑣)ଶ

୒

୧ୀଵ

 (2)

A concrete calculation is briefly described here. Let 𝑣௜ be the
estimated value of agent 𝑖 and 𝐽௜ = {𝑗 | 𝑒௜௝} be the set of agents

adjacent to agent 𝑖 . Agent 𝑖 holds the primal variable 𝑧௝ and the

dual variable 𝑝௝ in its internal state, where 𝑗 ∈ 𝐽௜ . The agent 𝑖

receives the current estimated value 𝑣௝ of the adjacent agent 𝑗 by

communication and updates its own estimated value 𝑣௜ with the
following recurrence formula

𝑧௝ ←
𝑣௜ + 𝑣௝

2

𝑝௝ ← 𝑝௝ +
𝑣௝ − 𝑣௜

2

𝑣௜ ←
1

1 + 𝜌 |𝐾|
൥𝑥௜ + ෍(𝑝௞ + 𝜌 𝑧௞)

௞∈௄

൩

(3)

where, 𝜌 is a hyper parameter representing the update step size. If
the agent network is a connected graph, 𝑣௜ converges to the correct
average value 𝑣 = 1/𝑁 ൫∑ 𝑥௜

ே
௜ୀଵ ൯ [16].

4 Method

4.1 Distributed Graph Convolutional Network
 (D-GCN)

In this section, we propose a distributed graph convolutional
network (D-GCN) that carries out task 1, i.e., regression (or
identification) of the system evaluation function.

For each agent to estimate the information of the entire system
from communication (information exchange) with only a small
number of neighboring agents, it is a natural idea to apply the graph
CNN on the agent network. We use a relational GCN (R-GCN),
which can consider the edge types.

The differences between D-GCN and the graph convolutional
reinforcement learning (GCRL) proposed in [9] are the following
two points. First, in GCRL, all agents execute synchronous
operation, that is, in each layer of graph convolution, all agents
synchronously execute a convolution operation based on the output
value of the former layer of the adjacent agents. On the other hand,
a D-GCN does not have any synchronization mechanism, and each
agent operates autonomously in an asynchronous manner. Second,

.

.

GCRL adopts a centralized-training-and-distributed-execution
paradigm. That is, it operates in distributed manner at the time of
execution, but at the time of learning it gathers the information of
all agents in one place and performs centralized learning. On the
other hand, a D-GCN performs not only execution but also learning
in a distributed manner.

First, in order to operate asynchronously, each agent in a D-
GCN stores the internal state values of the adjacent agents obtained
by communication as part of its own internal state value. When the
values of the adjacent agents are necessary, such as in convolution
or error backpropagation, the stored values are used. Note that the
stored values of the adjacent agents should include not only the
output value of the hidden layer necessary for forward propagation
but also the error signals required for learning (i.e., error
backpropagation). The errors due to the difference between the
current value of the adjacent agents and the stored values obtained
at the last communication is a penalty inevitable in a fully
asynchronous multi-agent system.

Next, in order to execute distributed learning, a distributed
algorithm to form consensus among all the agents of the system is
necessary. For example, the graph CNN usually shares the weights
and bias values of convolution filters over the entire graph. In order
to simulate the shared parameters such as weights and bias values
of the graph CNN by using a D-GCN, it is necessary to form
uniform consensus on learned parameters held by all agents at
learning time. Besides, in order to accomplish the regression
(identification) task of the system evaluation function (task 1), a
fully connected (FC) layer or a global average pooling (GAP) layer
is required after convolution layers. To form a uniform consensus
among agents it is necessary to realize these layers in a distributed
manner.

To form a uniform consensus, we use the two different uniform
consensus algorithms mentioned the previous section. First, to
realize a FC layer or GAP layer in forward propagation, obtaining
the average consensus using a D-ADMM is desirable. In a FC layer,
each agent independently multiplies the input value by the weight
and adds the bias, and then calculates the average value of all the
agents by using a D-ADMM. It should be noted that calculating the
average instead of the summation in a FC layer is not a problem for
the FC layer because the learned parameters (the weight and the
bias) become multiplied by the number of the agents. In a GAP
layer, each agent simply calculates the average value of all the
agents by using a D-ADMM. In the D-ADMM algorithm, the input
(the value of each agent) and the output (the average value of all
the agents) are separate variables. Therefore, even if the value of
each agent changes, a D-ADMM can continuously output the
correct average value.

Next, let us consider how to learn (update) shared parameter
values such as weight and bias of convolutional layers in a
distributed manner. Parameter learning is performed by error
backpropagation, i.e., by subtracting the difference value
determined by the error signal and the learning rate from the current
value of the parameter. To realize error backpropagation in a
distributed manner, each agent calculates the difference value from
only the error signals from the upper layer that the agent is in charge

of and independently updates the value of the parameter value
stored in its own internal state. After that, the final value of the
shared parameter is calculated as the average value of all the agents
by a uniform agreement algorithm. This calculation is justified by
the chain rule of differentiation—the fact that if a single parameter
appears multiple times on a computation graph, the error signal for
the parameter can be calculated by summation of the error signals
calculated separately for each occurrence. Note that calculating the
average instead of the summation in error backpropagation is not a
problem because the same result will be obtained if the learning
rate is multiplied by the number of agents in advance.

The average consensus algorithm is desirable for parameter
learning. Since a parameter is updated by a difference in back
propagation, if a D-ADMM is used the input value for each agent
deviates as time goes on, continuous calculation is impossible. On
the other hand, in the average consensus algorithm, the input (the
value of each agent) and the output (the average value of all the
agents) are the same variables. Since the parameter values held by
each agent are simultaneously updated by back propagation and
averaged by the average consensus algorithm, continuous learning
can be performed.

Algorithm 1 shows, as an example, the calculation of a D-GCN
consisting of one convolutional layer (Conv. layer) and one fully
connected layer (FC layer). The internal state 𝑆௜ of agent 𝑖 and the
calculation performed by the agent 𝑖 when communicating with the
adjacent agent 𝑗 are shown, where 𝜌 is the update step size of the
D-ADMM and 𝜂 is the learning rate. Note that the bias parameters
of Conv. layer and FC layer are omitted for simplicity. Agent 𝑖 can
autonomously calculate the final output value 𝑆௜. 𝑦௜ from its local
input 𝑥௜ . It can also autonomously update the parameters 𝑠. 𝑊௖

௥ ,

𝑠. 𝑊௖
௦௘௟௙ and 𝑠. 𝑊௙ according to the error signal Δy which is

common to all agents.

Figure 1: N agents moving on a 2-dimensional space.

Agent i

Agent j
𝜙𝑖𝑗

𝑟𝑖𝑗 𝜃𝑖𝑥𝑖
2

𝑥𝑖
1

𝜂𝑖𝑗

4.2 Swarm Convolutional Neural Network
(SwarmCNN)

Since in a D-GCN each agent can operate in a distributed and
asynchronous manner, the agent network structure, i.e., which
agents each agent can communicate with, can change dynamically.
For example, each agent moves in a geometric space, and at any
point in time, the agent network is configured according to the
proximity of the agents. That is, two agents in the vicinity can
communicate with each other.

Let us consider a task of estimating a system evaluation function
of moving agents by D-GCN. If the system evaluation function
depends on the geometric relationship of the agents, it is natural
idea to change the weight of the convolution filter of CNN
according to the relative position between two agents, similarly to
what is done in the geometric convolutional neural network [12].
We call a D-GCN consisting of a moving agent with geometric
convolution a swarm convolutional network (SwarmCNN).

Figure 1 shows an example of a SwarmCNN consisting of N
agents moving in a 2-dimensional space. Let 𝒙 = ൛(𝑥௜

ଵ, 𝑥௜
ଶ)ൟ

௜ୀଵ,…,ே

be the positions (coordinates) of the agents, and 𝜽 = {𝜃௜}௜ୀଵ,…,ே be
its head directions (moving directions). Agent 𝑖 views agent 𝑗 at the

distance 𝑟௜௝ = ට൫𝑥௝
ଵ − 𝑥௜

ଵ൯
ଶ

+ ൫𝑥௝
ଶ − 𝑥௜

ଶ൯
ଶ

 and the relative angle

𝜙௜௝ = arctan ൬
௫ೕ

మି௫೔
మ

௫೔
మି௫೔

భ൰ − 𝜃௜ . The relative head direction of agent 𝑗

as viewed from agent 𝑖 is 𝜂௜௝ = 𝜃௝ − 𝜃௜ . Let J୧(r) = {j | r୧୨ ≤ r}

denote the set of agents within distance 𝑟 from agent 𝑖 (excluding
agent 𝑖 itself).

Assuming that each agent can communicate with agents within
a distance 𝑟଴, the output values {𝑓௜}௜ୀଵ,…,ே of a convolutional layer
are calculated from the input values {ℎ௜}௜ୀଵ,…,ே as follows

 𝑓௜ = 𝑊ୱୣ୪୤ ⋅ ℎ௜ + ෍ 𝑊൫𝑟௜௝ , 𝜙௜௝ ; 𝑊ୟୢ୨൯

௝∈௃೔(௥బ)

⋅ ℎ௜௝ (4)

where 𝑊ୱୣ୪୤ and 𝑊ୟୢ୨ are learning parameters, which represent
weights for itself and neighboring agents, respectively, and
𝑊൫𝑟, 𝜙; 𝑊ୟୢ୨൯ represents a family of functions parameterized by

Algorithm 1: D-GCN (Conv. Layer → FC Layer)

Struct 𝑆௜ contains : agent internal state of agent 𝑖
Let 𝐽 = {𝑗| 𝑒௜௝} : all adjacent agents of agent 𝑖

 𝑥 : environmental input to agent 𝑖
 ℎ௖ : output value of Conv. layer
 𝑦 : final output value of FC layer
 𝛥𝑦 : error signal (environmental input) for agent 𝑖
 (environmental input)
 𝑊௖

௥ : weight parameter of Conv. layer
 for edges with relation 𝑟
 𝑤௖

௦௘௟௙ : weight parameter of Conv. layer
 for self-loop edges
 𝑊௙ : weight parameter of FC layer
 {𝑧௞}௞∈௄ : primal variable of D-ADMM for FC layer
 {𝑝௞}௞∈௄ : dual variable of D-ADMM for FC layer
 {m୩}୩∈୏ : memorized internal states of adjacent agents
End Struct

Procedure Communicate (𝑖, 𝑗)
 Send 𝑆௜ to Agent 𝑗 : send internal state to adjacent agent
 𝑆௜ . 𝑚௝ ← Received 𝑆௝ from Agent 𝑗

: memorize internal state of adjacent agent
 𝑠. 𝑧௝ ← ൫𝑠. 𝑦 + 𝑆௜. 𝑚௝ . 𝑦൯/2

: D-ADMM update of primal variable
 𝑠. 𝑝௝ ← 𝑠. 𝑝௝ + (𝜌/2)൫𝑆௜. 𝑚௝ . 𝑦 − 𝑠. 𝑦൯

: D-ADMM update of dual variable
 𝑠. 𝑊௖

௥ ← ൫𝑠. 𝑊௖
௥ + 𝑆௜ . 𝑚௝ . 𝑊௖

௥൯/2 : average consensus update

 𝑠. 𝑊௖
௦௘௟௙

← ൫𝑠. 𝑊௖
௦௘௟௙

+ 𝑆௜ . 𝑚௝ . 𝑊௖
௦௘௟௙

൯/2
: average consensus update

 𝑠. 𝑊௙ ← ൫𝑠. 𝑊௙ + 𝑆௜ . 𝑚௝ . 𝑊௙൯/2 : average consensus update
 𝑆௜ . 𝑥 ← 𝑥௜ : update 𝑆௜ . 𝑥 to the latest value
 𝑆௜ . 𝛻𝑦 ← 𝛻𝑦 : update 𝑆௜ . 𝛻𝑦 to the latest value
 ForwardPropagation(𝑆௜) : execute forward propagation
 BackwardPropagation(𝑆௜) : execute backward propagation
End Procedure

Subroutine ForwardPropagation(𝑆௜)

Let 𝐽 = {𝑗 | 𝑒௜௝} : all adjacent agents of agent 𝑖
 𝑆௜ . ℎ௖ ← 𝜎ൣ∑ 𝑊௖

௥೔ೖ (𝑆௜. 𝑚௞ . 𝑥)௞∈௄ + 𝑊௖
௦௘௟௙(𝑆௜ . 𝑥)൧

 : forward propagation of Conv. layer
 ℎ௙ = ൫𝑆௜. 𝑊௙൯(𝑆௜. ℎ௖) : forward propagation of FC layer
 𝑆௜ . 𝑦 ← ൣℎ௙ + ∑ (𝑆௜ . 𝑝௞ + 𝜌 𝑆௜ . 𝑧௞)௞∈௄ ൧ (1 + 𝜌|𝐾|)⁄
 : D-ADMM for FC layer
End Subroutine

Subroutine BackwardPropagation (S୧)

Let 𝐽 = {𝑗 | 𝑒௜௝} : all adjacent agents of agent 𝑖
𝛻ℎ௙ = 𝑆௜ . 𝛻𝑦 : chain rule for 𝛻ℎ௙

 𝛻𝑊௙ = (𝑆௜. ℎ௖) 𝛻ℎ௙ : chain rule for 𝛻𝑊௙
 𝛻ℎ௖ = ൫𝑆௜ . 𝑊௙൯ 𝛻ℎ௙ : chain rule for 𝛻ℎ௖
 𝛻𝑊௖

௥ = ∑ (𝑆௜ . 𝑚௞ . 𝑥)௞∈௄, ௥೔ೖୀ௥ 𝜎ᇱ(ௌ೔.௛೎)𝛻ℎ௖
: chain rule for 𝛻𝑊௖

௥
 ∇Wୡ

ୱୣ୪୤ = (S୧. x) σ′(S୧. hୡ) ∇hୡ : chain rule for 𝛻𝑊௖
௦௘௟௙

 𝑠. 𝑊௖
௥ ← 𝑠. 𝑊௖

௥ − 𝜂 𝛻𝑊௖
௥ : SGD update of parameter 𝑊௖

௥
 𝑠. 𝑊௖

௦௘௟௙
 ← 𝑠. 𝑊௖

௦௘௟௙
− 𝜂 𝛻𝑊௖

௦௘௟௙
: SGD update of parameter 𝑊௖

௦௘௟௙
 𝑠. 𝑊௙ ← 𝑠. 𝑊௙ − 𝜂 𝛻𝑊௙ : SGD update of parameter 𝑊௙
End Subroutine

Figure 2: Interpolated convolutional weight based on relative
position between two agents (for 𝐌 = 𝟏𝟐).

𝑟଴

𝑟 𝜙

𝑊଴

𝑊ଵ

𝑊ଶ

𝑊ଷ𝑊ସ

𝑊ହ

𝑊଻

𝑊଼

𝑊ଽ

𝑊ଵ଴
𝑊ଵଵ

𝑊ଵଶ

𝑊଺

Agent 𝑖

Agent j
𝑊௞∗

𝑊௞∗ାଵ

𝑊଴ angle

distance

𝑟଴

𝜙2𝜋𝑘∗

𝑀

2𝜋(𝑘∗ + 1)

𝑀

𝑟
𝑊 𝑟, 𝜙; 𝑊ୟୢ୨

𝑊௔ௗ௝ . By multiplying the input value of the agent 𝑗 by the weight
𝑊൫𝑟௝௜ , 𝜙௜௝ ; 𝑊ୟୢ୨൯ depending on the relative position 𝑟௜௝ and 𝜙௜௝ of

agent 𝑗 viewed from the agent 𝑖, the geometric relationship
between agents is taken into account. ℎ௜௝ is the value of agent 𝑗

used for the convolutional operation with respect to agent 𝑖. To
simply set ℎ௝௜ = ℎ௝ is one option. Another option is to set

 ℎ௜௝ = concat൫ℎ௝ , 𝑟௜௝ , 𝜙௜௝ , 𝜂௜௝൯ , (5)

that is, to reflet the relative position between the two agents as the
input value ℎ௜௝ itself.

An example of the function family 𝑊൫𝑟, 𝜙; 𝑊ୟୢ୨൯ is the use of
interpolation, as shown in Figure 2. Let the learning parameter
𝑊௔ௗ௝ consist of 𝑊଴, which is a weight used when agent 𝑗 is in the
exact same position as agent 𝑖 , and 𝑊௞ (where 𝑘 = 1,2, … , 𝑀),
which is used when agent 𝑗 is at distance 𝑟଴ and relative angle
2π/M from agent 𝑖 . Then 𝑊൫𝑟, 𝜙; 𝑊௔ௗ௝൯ is determined by
interpolation from the triangle in 𝑟-𝜙 space

𝑊൫𝑟, 𝜙; 𝑊௔ௗ௝൯

=
𝑟଴ − 𝑟

𝑟଴
𝑊଴ +

𝑀𝑟

2𝜋𝑟଴
൤൬

2𝜋(𝑘∗ + 1)

𝑀
− 𝜙൰ 𝑊௞∗

+ ൬𝜙 −
2𝜋𝑘∗

𝑀
൰ 𝑊௞∗ାଵ൨

where 𝑘∗ is an integer satisfying 2π𝑘∗/M ≤ 𝜙 < 2π(𝑘∗ + 1)/M.

4.3 MARL using SwarmCNN with action gradients
SwarmCNN consists of moving agents with geometric convolution.
Furthermore, let us consider that the movements of the agents are
controlled by SwarmCNN itself; that is, each agent moves in a way
based on the output value of the SwarmCNN that it belongs to.

According to the standard framework of reinforcement
learning, let SwarmCNN estimate the action value function Q(𝑠, 𝑎),
where 𝑠 is the state of all the agents and 𝑎 is all the combinations
of actions that the agents can take. Here we assume that the action
𝑎 of the agents is not a discrete but a continuous value.

We adopt an on-policy reinforcement learning; that is, while
learning SwarmCNN to estimate the action value function Q(𝑠, 𝑎),
at the same time, the next action 𝑎௧ାଵ of the agents is determined
according to the current value Q(𝑠௧ , 𝑎) of the state 𝑠௧ of the agents
at the time t. An on-policy reinforcement learning often uses the ε-
greedy method to determine the next action. However, it is difficult
to determine the greedy action argmax௔ Q(𝑠௧ , 𝑎) when the number
of agents (i.e., the dimension of action 𝑎) is large.

By taking advantage of the fact that the action 𝑎 is a
continuous value and SwarmCNN which represents 𝑄(𝑠, 𝑎) is
differentiable, we propose an action gradient method to determine
the next action 𝑎௧ାଵ of the agents. This method updates action 𝑎 by
the gradient ascent of the action value function Q(𝑠, 𝑎) at the time
𝑡

 𝑎௧ାଵ = 𝑎௧ + 𝜆
𝜕Q(𝑠, 𝑎)

𝜕𝑎
ቤ

௦ୀ௦೟. ௔ୀ௔೟

 (7)

where 𝜆 is a hyper parameter representing the step size of the action
update.

5 Experiments

5.1 MNIST digit recognition with D-GCN
First, we verified the effectiveness of a D-GCN in an image
recognition task with the MNIST handwritten digit dataset [17]. It
consists of 50,000 images for training and 10,000 images for test
(cross validation). Each image is a gray-scale image of 28 × 28
pixels on which one handwritten digit symbol is drawn.

The experiments were conducted on a D-GCN consisting of
28 × 28 = 784 agents, where each agent was responsible for one
pixel. While the input of each agent was only the value of the pixel
that it is responsible for, each agent had to identify the number
drawn on the whole image of 28×28 pixels by exchanging
information with the eight neighboring agents. This setting is, for
example, analogous to the situation that people on the ground
identify what is drawn on "Nazca's landscapes". The final answer
must be agreed by all participants. Reaching a consensus is
probably not easy when information is exchanged by people who
cannot move and can see only the ground directly beneath them.

The agent network of the D-GCN consisted of 784 nodes
(agents), and 2,970 edges (pairs of agents that can communicate
with each other). Each edge was annotated with one of eight kinds
of relations depending on its direction. The layer configuration used
in the experiment is shown in Table 1.

The D-GCN was trained in an online setting with handwritten
images switched one after another. The input to each agent
arranged in a grid was the pixel value corresponding to the position
on the input image. In addition, the correct identification result,
which was the same for all agents, was presented to each agent as
a teacher signal.

In a D-GCN, communication between adjacent agents (and
updating of the internal state) can be executed asynchronously. To
simulate the asynchronous operation, we prepared an array of
length 2,970 × 5 = 14,850 which stored five sets of 2,970 edge
IDs in random order. Then, communications between adjacent
agents were performed in the order stored in this array. Once all the
edges (communications between pairs of agents) in the array had
been processed, the array was shuffled in order again. Hereinafter,
this series of 14,850 operations will be referred to as one frame.
That is, during one frame, the communication between all the 2,970
adjacent pairs of agents and following internal state update of the
agents were performed five times respectively in random order. In
the experiment, one handwritten digit image was input to the D-
GCN for 30 frames and then switched to another, and so on.

Table 1: Layer configuration of D-GCN.

Layer Structure channels
0 input 28x28 1
1 Conv1+ReLU 28x28 10
2 MaxPool 28x28 10
3 Conv2+ReLU 28x28 5
4 MaxPool 28x28 5
5 FC (Linear)+SoftMax 10 (one-hot)

(6)

Each agent independently calculated the cross-entropy loss
from the teacher signal and its own output value at the time and
updated the parameter to decrease the loss. Adaptive moment
estimation (ADAM) with the learning rate lr=1e−6 was used for
parameter updating.

Figure 3 shows the temporal decrease of the average cross-
entropy loss for all the agents. The horizontal axis of the figure
represents the number of images shown. As described above, one
image corresponds to 30 frames. Since the training set of MNIST
consists of 50,000 images, we learned for less than 6 epochs
(30,000 images). Learning could not be done further due to
limitation of calculation time. The cross-entropy loss jumped at the
moment when the image was switched every 30 frames, and then it
decreased as a new consensus was formed among the agents. In
Figure 3, moving averages were taken with a window width of 3000
frames (100 images) to exclude the fluctuation every 30 frames.

The accuracy rate of identification using the learned
parameters was 93.6% for the test set. It did not reach the expected
rate of 97.3%, which is the accuracy rate with the optimum
parameters. As is clear from Figure 3, this was mainly because
parameter learning (optimization) had not yet converged. In
addition, hyperparameters such as learning rate might not be the
optimal values. First, we tried to set learning rate as 1e−4, which is
a value often-used in ADAM, but learning hardly proceeded. In this
experiment, since the parameters are updated for each
communication, parameter updating is performed 150 times during
one image (= 30 frames). The learning rate must be set to a
considerably small value to learn parameters properly.

Figure 4 shows the experiment of handwritten digit recognition
by D-GCN. The handwritten digits displayed in the background of
the figure indicate each pixel value which is the only input to each
agent. The small number displayed on each pixel is the recognition
result of each agent at that point. The frame number and the correct
answer of the handwritten digit image presented at that time are
shown at the upper right of each figure.

At the beginning (frame 0), the output values from each agent
did not match at all. As frame number increased, a consensus was
formed among agents, and most agents outputted the correct answer
7. Although the consensus was destroyed when the input image
suddenly switched to 2 at frame 30, as time (frame number) elapsed,
all the agents again outputted correct results.

Note that the consensus formation started in agents near the
center of the image and spread around the peripheral part because
the pixels near the center of the image had more information on the
handwritten digit.

5.2 Collective behavior with SwarmCNN
As an application of a SwarmCNN, let us consider the collective
animal behavior under predation risk. The “selfish herd” theory
proposed by Hamilton is a pioneering study of this field [18]. He
thought that the formation of herds is due to dilution of the
predation risk by aggregation. That is, each individual acts to
reduce its domain of danger (DOD), which is the area closest to the
individual. Known concrete behavior rules of each individual to
reduce DOD includes, for example, Nearest Neighbor (NN),

Multiple NNs (3NN), Local Crowded Horizon (LCH), etc. [18–20].
In recent years, studies on what type of herd is formed under each
behavioral rule are actively conducted [21–22].

On the other hand, in the field of computer vision, Raynolds
proposed well-known BOIDs rules [23]. The behavior of various
herds can be reproduced by changing the intensity of the three rules
of separation, alignment and cohesion. Recently, attempts have
been made to optimize the intensities of the three rules by genetic
algorithm to form herds under predation risk [24]. In these
approaches, some fundamental behavioral rules are given in
advance and the optimal combination of these rules is discussed. In
this section, we try using SwarmCNN to derive the behavior rules
from only the goal of reducing DOD.

Let us consider a discrete-time system consisting of N agents
(fishes) moving on a 2 -dimensional plane as shown in Figure 1.
The moving speed of all agents is fixed at v=0.003/timestep, and
each agent can change the moving direction (head direction) only
at each time step. Suppose that the agent 𝑖 suffers a penalty 𝐿௜(𝒙, 𝜽)
depending on the position 𝒙 of the agents and the head directions
𝜽. Specifically, the penalty 𝐿௜(𝒙, 𝜽) is assumed to be the sum two
terms 𝐿௜

௉(𝒙, 𝜽) and 𝐿௜
ீ(𝒙, 𝜽), depending on the relative positions of

the neighboring agents. When the agents move to minimize these
penalties, a herd is formed.

1. Proximity penalty.
A collision risk arises if agents are too close together. If there
exist other agents closer than a threshold distance 𝑟ଵ, agent 𝑖
is penalized according to the distance to the other agents

𝐿௜
௉(𝒙, 𝜽) = ෍ ቀ

𝑟ଵ

𝑟ఈ − 1ቁ

௝∈௃೔(௥భ)

where 𝛼 > 0 is a given parameter.

2. Gap penalty.
A predation risk arises if an agent (fish) is not surrounded by
other agents. Arranging agents 𝑗 ∈ 𝐽௜(𝑟ଶ) within distance 𝑟ଶ
from agent 𝑖 in ascending order of the relative angle 𝜙௜௝ , agent

𝑖 is penalized according to the gap angle 𝑑௝భ
= 𝜙௜௝మ

− 𝜙௜௝భ

between adjacent agents 𝑗ଵ and 𝑗ଶ

𝐿௜
ீ(𝒙, 𝜽) = ෍ 𝐿ௗ൫𝑑௝൯

௝∈௃೔(௥మ)

where

𝐿ௗ(𝑑) = ൤
0 if 𝑑 ≤ 𝑑଴

(𝑑 − 𝑑଴)ఉ if 𝑑 ≥ 𝑑଴

is a gap penalty function with given parameters 𝑑଴ > 0 and
𝛽 > 0. That is, if there exists another agent within the distance
𝑟ଶ, agent 𝑖 need not worry about predators for the angle range
of 𝑑଴ around the direction to that agent. This penalty, which
corresponds to the concept of Hamilton's DOD, is convenient
because it always has a finite value.

In the experiment, MARL using a SwarmCNN with the action
gradient method was used to form a herd. A SwarmCNN consisting
of all the agents was being learned to estimate the penalty value of
each agent. At the same time, the head direction of each agent was
changed by the action gradient method based on the SwarmCNN.

(9)

(8)

(10)

Actually, the SwarmCNN estimates the discounted sum of future
penalty ℒ୧(t) = ∑ 𝛾ఛஶ

ఛୀ଴ 𝐿௜(𝒙𝒕, 𝜽𝒕) of each agent, where 0 < 𝛾 <

1 is a discount factor.
Figure 5 shows the architecture of SwarmCNN used in the

experiment. It consists of three convolutional layers. The inputs to
the SwarmCNN were a one-hot vector 𝒌 = {𝑘௜} representing the
kind of each agent (if all agents are the same kind, 𝑘௜ = 1 for all
agents) and the relative position {𝑟௜௝}, {𝜙௜௝} and the relative head

direction {𝜂௜௝} between the agents, while the output was the future
discount sum of the penalty value of each agent. The input to the
first convolutional layer was the concatenation of four values 𝑘௝,

𝑟௜௝ , 𝜙௜௝ and 𝜂௜௝ as Equation (5), while the input of the second and
the third convolutional layer was simply is the output value of the
previous layer. In addition, since the task is to estimate not a single
value but N penalty values for every agent, the final outputs were
calculated using JK-Nets (concat) decoder, which concatenates the
value of each layer and performs linear conversion [25].

The SwarmCNN was learned by the state-action-reward-state-
action (SARSA) method with action gradient method. The learning
was performed purely on-policy without the experiment replay. To
stabilize learning, fixed target Q-network was used, where the
target network was continuously updated by taking running
average with momentum of 1e−3.

In parallel with learning of the SwarmCNN, each agent changed
the head direction by action gradient of the SwarmCNN at that
time. Actually, the head direction of each agent was changed to
decrease the average of estimated future penalties of all agents.
Note that all agents ware assumed to cooperate unlike selfish herd
problem. Table 2 shows the list of parameter values used for the
experiment.

Figure 6 shows the result of simulation with 100 fish agents on
1 × 1 sized area with periodic (torus) boundary. Initially, all fishes
ware swimming randomly (Figure 6a). They got closer to reduce
the gap penalty, but they suffer the proximity penalty because they
got too close to each other (Figure 6b). Finally, they formed a herd
by keeping an appropriate distance from each other (Figure 6c).
Individual fish agents were moving complicatedly, such as moving
in opposite directions in the core and peripheral part of the herd.

Figure 7 shows the results with surrounding walls instead of
periodic boundaries. When an agent approaches the walls, it
suffers a penalty of the same form as the proximity penalty. To
make the walls recognizable by the fish agents (gray), a total of
156 fixed (non-moving) “buoy” agents (blue) were placed at
intervals of 0.025 along the walls. The {𝑘௜} values of the buoy
agents were different from the fish agents. The buoy agents could
be recognized by the fish agents but did not participate in the
SwarmCNN of the fish agents. That is, they existed only as the
inputs of the SwarmCNN and did not communicate with other
agents. Finally, the fish agents formed a herd while avoiding the
walls.

Figure 8 shows the result if 10 predator agents (red) existed in
addition to 100 fish agents (gray). The predator agents traveled in
a straight line at constant speed 0.015 /timestep. The fish agent
suffered a large proximity penalty as it approached the predator
agents. Like the buoy agents, the predator agents were

recognizable from the fish agent but did not participate in the
SwarmCNN of the fish agents. In the figure, it is seen that the fish
agent makes a herd while avoiding the predator agent.

6 Conclusion
We proposed a distributed graph convolutional network (D-GCN)
for multi-agent systems, which estimates the macroscopic state of
the entire system in a distributed and asynchronous manner.
Although each agent operates autonomously while communicating
with neighboring agents, the estimates of every agent coincide with
the correct value. A D-GCN utilizes uniform consensus algorithms,
not only the estimation (execution) but also learning can be
executed asynchronously and in a distributed manner.

In addition to that, the SwarmCNN, which is a D-GCN
consisting of a group of agents moving on a plane, was proposed.
When a SwarmCNN is used, collective animal behaviors such as
herd formation arises from only the goal of reducing predation risk,
without any pre-given fundamental behavior rules.

Figure 5: Architecture of SwarmCNN.

Conv1 + ReLU

𝑥௝
ଵ, 𝑥௝

ଶ

𝑘௝

𝑥௝
ଵ, 𝑥௝

ଶ

𝑘௜

𝑊ୱୣ୪୤
ଵ

input

𝑊 𝑟௜௝, 𝜙௜௝; 𝑊ୟୢ୨
ଶ

Conv2 + ReLU

𝑊ୱୣ୪୤
ଶ

𝑊 𝑟௜௝, 𝜙௜௝; 𝑊ୟୢ୨
ଷ

Conv3 + ReLU

𝑊ୱୣ୪୤
ଷ

16ch

16ch

𝑄௜ 𝑄௝1ch

h୧୨
଴ = concat 𝑘௝, 𝑟௜௝, 𝜙௜௝, 𝜂௜௝

𝑊 𝑟௜௝, 𝜙௜௝; 𝑊ୟୢ୨
ଵ

Concat + linear

8ch

Figure 3: The average of the cross-entropy loss for all agents.

(Applied moving average for 3000 frames)

Table 2: Parameter values for SwarmCNN.

(a) Initial state (b) Intermediate state (c) Final state

Figure 4: Digit recognition by D-GCN.

Figure 7: Herd formation
with surrounding walls.

Figure 8: Herd formation
with predators.

grey: fish agents
blue: buoy agents

grey: fish agents
red: predator agents

Figure 6: Herd formation by SwarmCNN.

𝜋/6

M
𝑟଴
𝜆
𝑟ଵ
𝛼
𝑟ଶ
𝑑଴
𝛽

𝑟ଵ
௉

𝛼௉

𝑟ଵ
ௐ

𝛼ௐ

 Parameter value

　 　 (Conv. layer) 12

　 　 (Conv. layer) 0.1

　 　 (action gradient updating) 5.0

　 　 (Proximity penalty) 0.01

　　 (Proximity penalty) 1.0

　　 (Gap penalty) 0.1

　 　 (Gap penalty)

　 　 (Gap penalty) 1.5

optimizer algorithm ADAM

learning rate 1e-5

velocity/timestep (fish) 0.003

predetor's velocity/timestep 0.0015

　 　 (Proximity penalty for predetor) 0.2

　 　 (Proximity penalty for predetor) 1.0

　　 (Proximity penalty for wall) 1.5

　 (Proximity penalty for wall) 1.5

REFERENCES
[1] W. Ren and R.W. Beard, (2008). Distributed Consensus in Multi-vehicle

Cooperative Control: Theory and Applications. Springer-Verlag London. DOI:
http://dx.doi.org/10.1007/978-1-84800-015-5.

[2] S. Traba, E. Bajic, A. Zouinkhi, M.N. Abdelkrima, H. Chekir, and R.H. Ltaief
(2015). Product Allocation Planning with Safety Compatibility Constraints in
IoT-based Warehouse. Procedia Computer Science, 73, 290–297.

[3] K.J. Prabuchandran, A.N. Hemanth Kumar, and S. Bhatnagar. (2014). Multi-
agent Reinforcement Learning for Traffic Signal Control. Proc. of IEEE
International Conference on Intelligent Transportation Systems (ITSC) 2014,
2529–2534.

[4] H. Kawashima, T. Kato, and T. Matsuyama. (2013). Distributed Mode
Scheduling for Coordinating Power Balancing. Proc. of IEEE International
Conference on Smart Grid Communications (SmartGridComm) 2013, 19–24.

[5] X. Yi, W. Lu, and T. Chen. (2016). Centralized event-triggered control for linear
multi-agent systems. Proc. of Chinese Control and Decision Conference (CCDC)
2016, 225–230.

[6] A. Abdallah and X. Shen, 2018. Security and Privacy in Smart Grid. Springer
International Publishing. DOI: http://dx.doi.org/10.1007/978-3-319-93677-2.

[7] Y. Cao, W. Yu, W. Ren, and G. Chen. (2017). An Overview of Recent Progress
in the Study of Distributed Multi-Agent Coordination. (2019). IEEE Transactions
on Industrial Informatics, 9(1), 427–438.

[8] S. Miura and J. Miyakoshi. (2017). New interaction in autonomous decentralized
control method for future social systems. Proc. of International Symposium on
Control Systems (SICE ISCS) 2017, 33–40.

[9] J. Jiang, C. Dun, and Z. Lu. (2019), Graph Convolutional Reinforcement
Learning for Multi-Agent Cooperation. https://arxiv.org/abs/1810.09202.

[10] T.N. Kipf and M. Welling. (2017). Semi-Supervised Classification with Graph
Convolutional Networks, International Conference on Learning Representation
(ICLR) 2017, https://arxiv.org/abs/1609.02907.

[11] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Berg, I. Titov, and M. Welling. (2017),
Modeling Relational Data with Graph Convolutional Networks.
https://arxiv.org/abs/1703.06103.

[12] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein.
(2017). Geometric deep learning on graphs and manifolds using mixture model
CNNs. In Proceedings IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2017, 5425–5434.

[13] S. S. Kia, B.V. Scoy, J. Cortes, R. A. Freeman, K. M. Lynch, and S. Martinez
(2017), Tutorial on dynamic average consensus: the problem, its applications,
and the algorithms. https://arxiv.org/abs/1803.04628.

[14] Dhuli, Sateeshkrishna and Singh, Yatindra. (2018). Analysis of Average
Consensus Algorithm for Asymmetric Regular Networks.
https://arxiv.org/abs/1806.03932.

[15] E. Wei and A. Ozdaglar. (2013). On the O(1/k) Convergence of Asynchronous
Distributed Alternating Direction Method of Multipliers. Proc. of IEEE Global
Conference on Signal and Information Processing (GlobalSIP), 2013, 551–554.

[16] E. Wei and A. Ozdaglar. (2013). On the O(1/k) Convergence of Asynchronous
Distributed Alternating Direction Method of Multipliers.
https://arxiv.org/abs/1307.8254.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

[18] W.D. Hamilton. (1971). Geometry for the Selfish Herd. Journal of Theoretical
Biology, 31(2), 295–311.

[19] T. L. Morton, J. W. Haefner, V. Nugala, R. D. Decino, and L. Mendes. (1994).
The selfish herd revisited: Do simple movement rules reduce relative predation
risk?. Journal of Theoretical Biology, 167(1), 73–79.

[20] S. V. Viscido and D. S. Wethey. (2001). Quantitative analysis of fiddler crab
flock movement: evidence for ‘selfish herd’ behaviour. Animal Behaviour, 63(4),
735–741.

[21] L. J. Morrell, G.D. Ruxton, and R. James, (2011), Spatial positioning in the
selfish herd, Behavioral Ecology, 22(1), 16–22.

[22] G.M. Rodgers, B. Downing, and L.J. Morrell, (2015), Prey body size mediates
the predation risk associated with being “odd”. Evolutionary Ecology, 26(1),
242–246.

[23] C.W. Reynolds. (1987). Flocks, herds and schools: A distributed behavioral
model. In Proceedings of the 14th annual conference on Computer graphics and
interactive techniques (SIGGRAPH) 1987. 25–34.

[24] M. Wagner, W. Cai, and M. H. Lees. (2013). Emergence by strategy: flocking
boids and their fitness in relation to model complexity. In Proceedings of the 2013
Winter Simulation Conference. IEEE. 1479–1490.

[25] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. (2018).
Representation Learning on Graphs with Jumping Knowledge Networks.
Proceedings of the 35th International Conference on Machine Learning (ICML),
PMLR 80:5453–5462.

