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ABSTRACT 
Realizing cooperation is a major goal in the study of a multi- agent 
system. In this paper we propose a distributed graph convolutional 
network (D-GCN) that estimates the macroscopic state. It Utilizes 
uniform consensus algorithms and enables not only the estimation 
(execution) but also learning to be executed asynchronously and in 
a distributed manner. In addition, we propose the SwarmCNN, 
which is a D-GCN consisting of a group of agents moving on a 
plane. When a SwarmCNN is used, collective animal behaviors 
such as herd formation arise from only the goal of reducing 
predation risk without any pre-given fundamental behavior rules. 

KEYWORDS 
Graph convolutional neural network, Multi-agent reinforcement 
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1 Introduction 
Realizing cooperation is a major goal in study of a multi-agent 
system consisting of a large number of autonomous agents, such as 
cooperative control of multiple vehicles, a smart warehouse with 
cooperation of multiple handling robots, control of traffic signals, 
smart grid control, etc. [1–4]. One method for this is centralized 
gathering of information of all agents in one place (central server), 
deriving the optimum behavior of all agents, and notifying each 
agent of the result [5]. However, as the number of agents increases, 
gathering information from all agents to the central server and 
deriving the optimal behavior of all agents become problematic in 
terms of communication quantity and computational complexity. 
Moreover, gathering information on all agents in one place may 
raise privacy and/or security risk depending on the content of the 
information [6]. 

Another method is distributed operation that instead of 
gathering information on all agents in one place has each agent act 
autonomously while exchanging information between neighboring 
agents. In recent years there have been some efforts estimate the 
macroscopic state of the entire system or to optimize the entire 
behavior of the system in a distributed manner [7–9]. However, 
none of those efforts has satisfied two requirements important for 
practical use. First, each agent should operate completely 
asynchronously without any synchronization mechanism. Second, 
not only estimation (execution) but also learning should be done in 
a distributed manner. 

In this paper, we propose a distributed graph convolutional 
network (D-GCN), in which each autonomous agent estimates the 

macroscopic state of the whole system by asynchronously 
communicating with neighboring agents. A D- GCN is based on the 
graph convolutional neural network upon the agent network which 
represents communicable relation among agents. Utilizing uniform 
consensus algorithms, a D-GCN can perform not only execution 
(forward propagation) but also learning (error backpropagation) in 
a distributed and asynchronous manner. 

In addition to that, we propose a SwarmCNN which is a D- GCN 
applied to a group of agents moving in space. It will be shown that 
a herd can be formed by a SwarmCNN controlling the movement 
of agents. 

2 Problem Statement 
Let us consider a multi-agent system consisting of many agents. 

There are no central controllers nor synchronization mechanism, 
and each agent operates in a distributed and asynchronous manner. 
Each agent receives a localized input from environment, i.e., the 
input is different for each agent. In addition, each agent has its own 
internal state.  

Assume that each agent can communicate with specific agents. 
Here, communication means that two agents perform the following 
two operations:  

1. each sending its own internal to the other, and 
2. each updating its internal state based on the internal state of 

the other. 
These two processes are assumed to be executed instantaneously. 
Although the frequency and timing of communication may differ 
for each edge (pair of agents that can communicates with each 
other) on the agent network, the communication frequency of every 
edge is assumed to not be zero. 

Let us consider the following two tasks that the entire system 
should accomplish:  

1. Regression (identification) of system evaluation function. 

Each agent ought to estimate (regress) a system evaluation 
function that depends on all the input describing the local 
environments of the agents. Each agent performs estimation 
independently, but the estimated values of all agents must 
converge to the correct system evaluation function. There is 
also a variational task that assuming the entire system have 
several discrete states, each agent ought to identify the current 
state of the entire system. 

2. Optimization of system evaluation function (multi-agent 
reinforcement learning, MARL). 
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Consider that each agent takes some actions based on its local 
environmental input and internal state. It is assumed that the 
combination of actions taken by all agents affects the future 
input from the environment. Each agent ought to find the 
optimum action that maximizes the future value of the system 
evaluation function. This task is one of the typical forms of 
multi-agent reinforcement learning (MARL). 

 

3 Related Work 

3.1 Graph Convolutional Network (GCN) 
In recent years, the graph convolutional network (GCN) has 
attracted attention as a method of deep learning for graph structures 
[10–11]. It consists of stacking of multiple graph convolutional 
layers (i.e., summing up the values of the adjacent nodes multiplied 
by different weights for each edge type) and then applying a 
nonlinear activation function such as a ReLU.  

Applying GCN to the agent network of a multi agent system is 
a natural idea. For example, [9] applied GCN to MARL of task 2 
and confirmed the effectiveness. Although [9] adopted a paradigm 
of centralized training and distributed execution, distributed 
training is desirable for practical use. 

3.2 Geometric Convolutional Neural Network 
Conventional CNN for the image (grid network) uses, for example, 
3 × 3 kernel filter, where different weights are applied to the pixels 
in the eight directions of the horizontal and vertical diagonal 
directions of the center pixel. For a graph convolutional network 
upon the geometric graph (i.e., graphs drawn in the n-dimensional 
space), it is a natural idea to change the weight of the convolution 
filter of the GCN according to the relative geometric relationship 
between the nodes. In [12], the weight is determined by the 
gaussian mixture model (GMM) based on the relative position 
(coordinates) of each node. 

3.3 Uniform Consensus Algorithm 
In task 1, the estimated value of the system evaluation functions of 
every agent, which operates in distributed manner, needs to be the 
same for all agents. Similarly, in order to realize distributed 
learning in MARL with a GCN, it is necessary for all agents to 
agree (converge to a uniform consensus) on learning parameters 
such as shared weights of the GCN. 

Let us focus on the following two algorithms for the uniform 
consensus problem. 

 

3.3.1 Average Consensus Algorithm. A well-known method of 
forming a uniform consensus is the average consensus algorithm 
[13–14]. Although there are many variants of the average 
consensus algorithm, the basic idea is to distribute 𝑥௜ among agents 
while keeping the sum of values 𝑥௜   held in each agent constant. 
Since the sum of 𝑥௜  is always constant, the convergence value is the 
average value of the initial values of 𝑥௜ . In the simplest average 

agreement algorithm, when communicating between agent 𝑖  and 
agent 𝑗, 𝑥௜ and 𝑥௝  are changed as follows 

 𝑥௜
௧ାଵ = 𝑥௝

௧ାଵ =
ଵ

ଶ
൫𝑥௜

௧ + 𝑥௝
௧൯ . (1) 

 

3.3.2 Average Consensus by Distributed ADMM. A distributed 
ADMM (D-ADMM), which executes the alternating direction 
method of multipliers (ADMM) algorithm in a distributed manner, 
has been proposed [15–16]. A D-ADMM can solve the 
optimization problem for all agents by considering the dual 
problem of the optimization problem. In particular, by using a D-
ADMM to solve the following optimization problem, it is possible 
to calculate the average value 𝑣 = 1/𝑁 ൫∑ 𝑥௜

ே
௜ୀଵ ൯ of the N values 

𝑥௜  in a distributed and asynchronous manner 

 𝑣 = argmin
{௩}

  ෍
1

2
(𝑥௜ − 𝑣)ଶ

୒

୧ୀଵ

  (2) 

A concrete calculation is briefly described here. Let 𝑣௜  be the 
estimated value of agent  𝑖  and 𝐽௜ = {𝑗 | 𝑒௜௝} be the set of agents 

adjacent to agent 𝑖 . Agent 𝑖  holds the primal variable 𝑧௝  and the 

dual variable 𝑝௝  in its internal state, where 𝑗 ∈ 𝐽௜  . The agent 𝑖 

receives the current estimated value 𝑣௝  of the adjacent agent 𝑗 by 

communication and updates its own estimated value 𝑣௜  with the 
following recurrence formula 

 

𝑧௝ ←
𝑣௜ + 𝑣௝

2
 

𝑝௝ ← 𝑝௝ +
𝑣௝ − 𝑣௜

2
 

𝑣௜ ←
1

1 + 𝜌 |𝐾|
൥𝑥௜ + ෍(𝑝௞ + 𝜌 𝑧௞)

௞∈௄

൩ 

(3) 

where, 𝜌 is a hyper parameter representing the update step size. If 
the agent network is a connected graph, 𝑣௜  converges to the correct 
average value 𝑣 = 1/𝑁 ൫∑ 𝑥௜

ே
௜ୀଵ ൯  [16]. 

4 Method 

4.1 Distributed Graph Convolutional Network 
 (D-GCN) 

In this section, we propose a distributed graph convolutional 
network (D-GCN) that carries out task 1, i.e., regression (or 
identification) of the system evaluation function.  

For each agent to estimate the information of the entire system 
from communication (information exchange) with only a small 
number of neighboring agents, it is a natural idea to apply the graph 
CNN on the agent network. We use a relational GCN (R-GCN), 
which can consider the edge types. 

The differences between D-GCN and the graph convolutional 
reinforcement learning (GCRL) proposed in [9] are the following 
two points. First, in GCRL, all agents execute synchronous 
operation, that is, in each layer of graph convolution, all agents 
synchronously execute a convolution operation based on the output 
value of the former layer of the adjacent agents. On the other hand, 
a D-GCN does not have any synchronization mechanism, and each 
agent operates autonomously in an asynchronous manner. Second, 

.

.



  
 

 

GCRL adopts a centralized-training-and-distributed-execution 
paradigm. That is, it operates in distributed manner at the time of 
execution, but at the time of learning it gathers the information of 
all agents in one place and performs centralized learning. On the 
other hand, a D-GCN performs not only execution but also learning 
in a distributed manner. 

First, in order to operate asynchronously, each agent in a D-
GCN stores the internal state values of the adjacent agents obtained 
by communication as part of its own internal state value. When the 
values of the adjacent agents are necessary, such as in convolution 
or error backpropagation, the stored values are used. Note that the 
stored values of the adjacent agents should include not only the 
output value of the hidden layer necessary for forward propagation 
but also the error signals required for learning (i.e., error 
backpropagation). The errors due to the difference between the 
current value of the adjacent agents and the stored values obtained 
at the last communication is a penalty inevitable in a fully 
asynchronous multi-agent system. 

Next, in order to execute distributed learning, a distributed 
algorithm to form consensus among all the agents of the system is 
necessary. For example, the graph CNN usually shares the weights 
and bias values of convolution filters over the entire graph. In order 
to simulate the shared parameters such as weights and bias values 
of the graph CNN by using a D-GCN, it is necessary to form 
uniform consensus on learned parameters held by all agents at 
learning time. Besides, in order to accomplish the regression 
(identification) task of the system evaluation function (task 1), a 
fully connected (FC) layer or a global average pooling (GAP) layer 
is required after convolution layers. To form a uniform consensus 
among agents it is necessary to realize these layers in a distributed 
manner. 

To form a uniform consensus, we use the two different uniform 
consensus algorithms mentioned the previous section. First, to 
realize a FC layer or GAP layer in forward propagation, obtaining 
the average consensus using a D-ADMM is desirable. In a FC layer, 
each agent independently multiplies the input value by the weight 
and adds the bias, and then calculates the average value of all the 
agents by using a D-ADMM. It should be noted that calculating the 
average instead of the summation in a FC layer is not a problem for 
the FC layer because the learned parameters (the weight and the 
bias) become multiplied by the number of the agents. In a GAP 
layer, each agent simply calculates the average value of all the 
agents by using a D-ADMM. In the D-ADMM algorithm, the input 
(the value of each agent) and the output (the average value of all 
the agents) are separate variables. Therefore, even if the value of 
each agent changes, a D-ADMM can continuously output the 
correct average value.  

Next, let us consider how to learn (update) shared parameter 
values such as weight and bias of convolutional layers in a 
distributed manner. Parameter learning is performed by error 
backpropagation, i.e., by subtracting the difference value 
determined by the error signal and the learning rate from the current 
value of the parameter. To realize error backpropagation in a 
distributed manner, each agent calculates the difference value from 
only the error signals from the upper layer that the agent is in charge 

of and independently updates the value of the parameter value 
stored in its own internal state. After that, the final value of the 
shared parameter is calculated as the average value of all the agents 
by a uniform agreement algorithm. This calculation is justified by 
the chain rule of differentiation—the fact that if a single parameter 
appears multiple times on a computation graph, the error signal for 
the parameter can be calculated by summation of the error signals 
calculated separately for each occurrence. Note that calculating the 
average instead of the summation in error backpropagation is not a 
problem because the same result will be obtained if the learning 
rate is multiplied by the number of agents in advance. 

The average consensus algorithm is desirable for parameter 
learning. Since a parameter is updated by a difference in back 
propagation, if a D-ADMM is used the input value for each agent 
deviates as time goes on, continuous calculation is impossible. On 
the other hand, in the average consensus algorithm, the input (the 
value of each agent) and the output (the average value of all the 
agents) are the same variables. Since the parameter values held by 
each agent are simultaneously updated by back propagation and 
averaged by the average consensus algorithm, continuous learning 
can be performed. 

Algorithm 1 shows, as an example, the calculation of a D-GCN 
consisting of one convolutional layer (Conv. layer) and one fully 
connected layer (FC layer). The internal state 𝑆௜ of agent 𝑖 and the 
calculation performed by the agent 𝑖 when communicating with the 
adjacent agent 𝑗 are shown, where 𝜌 is the update step size of the 
D-ADMM and 𝜂 is the learning rate. Note that the bias parameters 
of Conv. layer and FC layer are omitted for simplicity. Agent 𝑖 can 
autonomously calculate the final output value 𝑆௜. 𝑦௜ from its local 
input 𝑥௜ . It can also autonomously update the parameters 𝑠. 𝑊௖

௥ , 

𝑠. 𝑊௖
௦௘௟௙  and 𝑠. 𝑊௙  according to the error signal Δy  which is 

common to all agents. 

 

Figure 1: N agents moving on a 2-dimensional space. 
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4.2 Swarm Convolutional Neural Network 
(SwarmCNN) 

Since in a D-GCN each agent can operate in a distributed and 
asynchronous manner, the agent network structure, i.e., which 
agents each agent can communicate with, can change dynamically. 
For example, each agent moves in a geometric space, and at any 
point in time, the agent network is configured according to the 
proximity of the agents. That is, two agents in the vicinity can 
communicate with each other.  

Let us consider a task of estimating a system evaluation function 
of moving agents by D-GCN. If the system evaluation function 
depends on the geometric relationship of the agents, it is natural 
idea to change the weight of the convolution filter of CNN 
according to the relative position between two agents, similarly to 
what is done in the geometric convolutional neural network [12]. 
We call a D-GCN consisting of a moving agent with geometric 
convolution a swarm convolutional network (SwarmCNN). 

Figure 1 shows an example of a SwarmCNN consisting of N 
agents moving in a 2-dimensional space. Let 𝒙 = ൛(𝑥௜

ଵ, 𝑥௜
ଶ)ൟ

௜ୀଵ,…,ே
 

be the positions (coordinates) of the agents, and 𝜽 = {𝜃௜}௜ୀଵ,…,ே be 
its head directions (moving directions). Agent 𝑖 views agent 𝑗 at the 

distance 𝑟௜௝ = ට൫𝑥௝
ଵ − 𝑥௜

ଵ൯
ଶ

+ ൫𝑥௝
ଶ − 𝑥௜

ଶ൯
ଶ

 and the relative angle 

𝜙௜௝ = arctan ൬
௫ೕ

మି௫೔
మ

௫೔
మି௫೔

భ൰ − 𝜃௜ . The relative head direction of agent 𝑗 

as viewed from agent 𝑖  is 𝜂௜௝ = 𝜃௝ − 𝜃௜ . Let J୧(r) = {j | r୧୨ ≤ r} 

denote the set of agents within distance 𝑟 from agent 𝑖 (excluding 
agent 𝑖 itself). 

Assuming that each agent can communicate with agents within 
a distance 𝑟଴, the output values {𝑓௜}௜ୀଵ,…,ே of a convolutional layer 
are calculated from the input values {ℎ௜}௜ୀଵ,…,ே as follows 

 𝑓௜ = 𝑊ୱୣ୪୤ ⋅ ℎ௜ + ෍ 𝑊൫𝑟௜௝ , 𝜙௜௝ ;  𝑊ୟୢ୨൯

௝∈௃೔(௥బ)

⋅ ℎ௜௝  (4) 

where 𝑊ୱୣ୪୤ and 𝑊ୟୢ୨ are learning parameters, which represent 
weights for itself and neighboring agents, respectively, and 
𝑊൫𝑟, 𝜙;  𝑊ୟୢ୨൯ represents a family of functions parameterized by 

Algorithm 1: D-GCN (Conv. Layer → FC Layer) 

Struct 𝑆௜ contains  : agent internal state of agent 𝑖 
Let 𝐽 = {𝑗| 𝑒௜௝}  : all adjacent agents of agent 𝑖 

  𝑥   : environmental input to agent 𝑖 
  ℎ௖   : output value of Conv. layer  
  𝑦   : final output value of FC layer 
  𝛥𝑦   : error signal  (environmental input) for agent 𝑖 
      (environmental input) 
  𝑊௖

௥    : weight parameter of Conv. layer  
      for edges with relation 𝑟 
  𝑤௖

௦௘௟௙    : weight parameter of Conv. layer  
      for self-loop edges 
  𝑊௙    : weight parameter of FC layer  
  {𝑧௞}௞∈௄    : primal variable of D-ADMM for FC layer  
  {𝑝௞}௞∈௄    : dual variable of D-ADMM for FC layer  
  {m୩}୩∈୏  : memorized internal states of adjacent agents  
End Struct 
 
Procedure Communicate (𝑖, 𝑗) 
  Send 𝑆௜ to Agent 𝑗 : send internal state to adjacent agent  
  𝑆௜ . 𝑚௝ ← Received 𝑆௝ from Agent 𝑗 

: memorize internal state of adjacent agent  
  𝑠. 𝑧௝ ← ൫𝑠. 𝑦 + 𝑆௜. 𝑚௝ . 𝑦൯/2 

: D-ADMM update of primal variable 
  𝑠. 𝑝௝ ← 𝑠. 𝑝௝ + (𝜌/2)൫𝑆௜. 𝑚௝ . 𝑦 − 𝑠. 𝑦൯ 

: D-ADMM update of dual variable  
  𝑠. 𝑊௖

௥ ← ൫𝑠. 𝑊௖
௥ + 𝑆௜ . 𝑚௝ . 𝑊௖

௥൯/2 : average consensus update  

  𝑠. 𝑊௖
௦௘௟௙

← ൫𝑠. 𝑊௖
௦௘௟௙

+ 𝑆௜ . 𝑚௝ . 𝑊௖
௦௘௟௙

൯/2 
: average consensus update 

  𝑠. 𝑊௙ ← ൫𝑠. 𝑊௙ + 𝑆௜ . 𝑚௝ . 𝑊௙൯/2 : average consensus update 
  𝑆௜ . 𝑥 ← 𝑥௜         : update 𝑆௜ . 𝑥 to the latest value 
  𝑆௜ . 𝛻𝑦 ← 𝛻𝑦         : update 𝑆௜ . 𝛻𝑦 to the latest value 
  ForwardPropagation(𝑆௜)         : execute forward propagation  
  BackwardPropagation(𝑆௜)        : execute backward propagation 
End Procedure 
 
Subroutine ForwardPropagation(𝑆௜) 

Let 𝐽 = {𝑗 | 𝑒௜௝}  : all adjacent agents of agent 𝑖 
  𝑆௜ . ℎ௖ ← 𝜎ൣ∑ 𝑊௖

௥೔ೖ (𝑆௜. 𝑚௞ . 𝑥)௞∈௄ + 𝑊௖
௦௘௟௙(𝑆௜ . 𝑥)൧ 

   : forward propagation of Conv. layer 
  ℎ௙ = ൫𝑆௜. 𝑊௙൯(𝑆௜. ℎ௖) : forward propagation of FC layer 
  𝑆௜ . 𝑦 ← ൣℎ௙ + ∑ (𝑆௜ . 𝑝௞ + 𝜌 𝑆௜ . 𝑧௞)௞∈௄ ൧ (1 + 𝜌|𝐾|)⁄  
   : D-ADMM for FC layer  
End Subroutine 
 
Subroutine BackwardPropagation (S୧) 

Let 𝐽 = {𝑗 | 𝑒௜௝}  : all adjacent agents of agent 𝑖 
𝛻ℎ௙ = 𝑆௜ . 𝛻𝑦  : chain rule for 𝛻ℎ௙ 

  𝛻𝑊௙ = (𝑆௜. ℎ௖) 𝛻ℎ௙ : chain rule for 𝛻𝑊௙  
  𝛻ℎ௖ = ൫𝑆௜ . 𝑊௙൯ 𝛻ℎ௙ : chain rule for 𝛻ℎ௖ 
  𝛻𝑊௖

௥ = ∑  (𝑆௜ . 𝑚௞ . 𝑥)௞∈௄, ௥೔ೖୀ௥ 𝜎ᇱ(ௌ೔.௛೎)𝛻ℎ௖ 
: chain rule for 𝛻𝑊௖

௥  
  ∇Wୡ

ୱୣ୪୤  = (S୧. x) σ′(S୧. hୡ) ∇hୡ      : chain rule for 𝛻𝑊௖
௦௘௟௙ 

  𝑠. 𝑊௖
௥  ←  𝑠. 𝑊௖

௥ − 𝜂 𝛻𝑊௖
௥             : SGD update of parameter 𝑊௖

௥ 
  𝑠. 𝑊௖

௦௘௟௙
  ←  𝑠. 𝑊௖

௦௘௟௙
− 𝜂 𝛻𝑊௖

௦௘௟௙  
: SGD update of parameter 𝑊௖

௦௘௟௙ 
  𝑠. 𝑊௙  ←  𝑠. 𝑊௙ − 𝜂 𝛻𝑊௙  : SGD update of parameter 𝑊௙ 
End Subroutine 

 

 

 

 

 

 

 

Figure 2: Interpolated convolutional weight based on relative 
position between two agents (for 𝐌 = 𝟏𝟐). 
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𝑊௔ௗ௝ . By multiplying the input value of the agent 𝑗 by the weight 
𝑊൫𝑟௝௜ , 𝜙௜௝ ;  𝑊ୟୢ୨൯ depending on the relative position 𝑟௜௝  and 𝜙௜௝  of 

agent 𝑗 viewed from the agent 𝑖, the geometric relationship 
between agents is taken into account. ℎ௜௝  is the value of agent 𝑗 

used for the convolutional operation with respect to agent 𝑖. To 
simply set ℎ௝௜  =  ℎ௝ is one option. Another option is to set 

 ℎ௜௝ = concat൫ℎ௝ , 𝑟௜௝ , 𝜙௜௝ , 𝜂௜௝൯ , (5) 

that is, to reflet the relative position between the two agents as the 
input value ℎ௜௝  itself. 

An example of the function family 𝑊൫𝑟, 𝜙; 𝑊ୟୢ୨൯ is the use of 
interpolation, as shown in Figure 2. Let the learning parameter 
𝑊௔ௗ௝  consist of 𝑊଴, which is a weight used when agent 𝑗 is in the 
exact same position as agent 𝑖 , and 𝑊௞  (where 𝑘 = 1,2, … , 𝑀), 
which is used when agent 𝑗  is at distance 𝑟଴  and relative angle 
2π/M  from agent 𝑖 . Then 𝑊൫𝑟, 𝜙;  𝑊௔ௗ௝൯  is determined by 
interpolation from the triangle in 𝑟-𝜙 space 

𝑊൫𝑟, 𝜙; 𝑊௔ௗ௝൯ 

=
𝑟଴ − 𝑟

𝑟଴
𝑊଴ +

𝑀𝑟

2𝜋𝑟଴
൤൬

2𝜋(𝑘∗ + 1)

𝑀
− 𝜙൰ 𝑊௞∗

+ ൬𝜙 −
2𝜋𝑘∗

𝑀
൰ 𝑊௞∗ାଵ൨ 

where 𝑘∗ is an integer satisfying 2π𝑘∗/M ≤ 𝜙 < 2π(𝑘∗ + 1)/M. 

4.3 MARL using SwarmCNN with action gradients 
SwarmCNN consists of moving agents with geometric convolution. 
Furthermore, let us consider that the movements of the agents are 
controlled by SwarmCNN itself; that is, each agent moves in a way 
based on the output value of the SwarmCNN that it belongs to. 

According to the standard framework of reinforcement 
learning, let SwarmCNN estimate the action value function Q(𝑠, 𝑎), 
where 𝑠 is the state of all the agents and 𝑎 is all the combinations 
of actions that the agents can take. Here we assume that the action 
𝑎 of the agents is not a discrete but a continuous value. 

We adopt an on-policy reinforcement learning; that is, while 
learning SwarmCNN to estimate the action value function Q(𝑠, 𝑎), 
at the same time, the next action 𝑎௧ାଵ of the agents is determined 
according to the current value Q(𝑠௧ , 𝑎) of the state 𝑠௧ of the agents 
at the time t. An on-policy reinforcement learning often uses the ε-
greedy method to determine the next action. However, it is difficult 
to determine the greedy action argmax௔  Q(𝑠௧ , 𝑎) when the number 
of agents (i.e., the dimension of action 𝑎) is large. 

By taking advantage of the fact that the action 𝑎  is a 
continuous value and SwarmCNN which represents 𝑄(𝑠, 𝑎)  is 
differentiable, we propose an action gradient method to determine 
the next action 𝑎௧ାଵ of the agents. This method updates action 𝑎 by 
the gradient ascent of the action value function Q(𝑠, 𝑎) at the time 
𝑡 

 𝑎௧ାଵ = 𝑎௧ + 𝜆
𝜕Q(𝑠, 𝑎)

𝜕𝑎
ቤ

௦ୀ௦೟.  ௔ୀ௔೟

  (7) 

where 𝜆 is a hyper parameter representing the step size of the action 
update.  

5 Experiments 

5.1 MNIST digit recognition with D-GCN 
First, we verified the effectiveness of a D-GCN in an image 
recognition task with the MNIST handwritten digit dataset [17]. It 
consists of 50,000 images for training and 10,000 images for test 
(cross validation). Each image is a gray-scale image of 28 × 28 
pixels on which one handwritten digit symbol is drawn.  

The experiments were conducted on a D-GCN consisting of 
28 × 28 = 784 agents, where each agent was responsible for one 
pixel. While the input of each agent was only the value of the pixel 
that it is responsible for, each agent had to identify the number 
drawn on the whole image of 28×28 pixels by exchanging 
information with the eight neighboring agents. This setting is, for 
example, analogous to the situation that people on the ground 
identify what is drawn on "Nazca's landscapes". The final answer 
must be agreed by all participants. Reaching a consensus is 
probably not easy when information is exchanged by people who 
cannot move and can see only the ground directly beneath them. 

The agent network of the D-GCN consisted of 784 nodes 
(agents), and 2,970 edges (pairs of agents that can communicate 
with each other). Each edge was annotated with one of eight kinds 
of relations depending on its direction. The layer configuration used 
in the experiment is shown in Table 1.  

The D-GCN was trained in an online setting with handwritten 
images switched one after another. The input to each agent 
arranged in a grid was the pixel value corresponding to the position 
on the input image. In addition, the correct identification result, 
which was the same for all agents, was presented to each agent as 
a teacher signal. 

In a D-GCN, communication between adjacent agents (and 
updating of the internal state) can be executed asynchronously. To 
simulate the asynchronous operation, we prepared an array of 
length 2,970 × 5 = 14,850  which stored five sets of 2,970 edge 
IDs in random order. Then, communications between adjacent 
agents were performed in the order stored in this array. Once all the 
edges (communications between pairs of agents) in the array had 
been processed, the array was shuffled in order again. Hereinafter, 
this series of 14,850 operations will be referred to as one frame. 
That is, during one frame, the communication between all the 2,970 
adjacent pairs of agents and following internal state update of the 
agents were performed five times respectively in random order. In 
the experiment, one handwritten digit image was input to the D-
GCN for 30 frames and then switched to another, and so on. 

Table 1: Layer configuration of D-GCN. 

Layer Structure channels
0  input 28x28 1
1  Conv1+ReLU 28x28 10
2  MaxPool 28x28 10
3  Conv2+ReLU 28x28 5
4  MaxPool 28x28 5
5  FC (Linear)+SoftMax 10 (one-hot)  

(6) 



  
 

 

 

Each agent independently calculated the cross-entropy loss 
from the teacher signal and its own output value at the time and 
updated the parameter to decrease the loss. Adaptive moment 
estimation (ADAM) with the learning rate lr=1e−6 was used for 
parameter updating.  

Figure 3 shows the temporal decrease of the average cross- 
entropy loss for all the agents. The horizontal axis of the figure 
represents the number of images shown. As described above, one 
image corresponds to 30 frames. Since the training set of MNIST 
consists of 50,000 images, we learned for less than 6 epochs 
(30,000 images). Learning could not be done further due to 
limitation of calculation time. The cross-entropy loss jumped at the 
moment when the image was switched every 30 frames, and then it 
decreased as a new consensus was formed among the agents. In 
Figure 3, moving averages were taken with a window width of 3000 
frames (100 images) to exclude the fluctuation every 30 frames. 

The accuracy rate of identification using the learned 
parameters was 93.6% for the test set. It did not reach the expected 
rate of 97.3%, which is the accuracy rate with the optimum 
parameters. As is clear from Figure 3, this was mainly because 
parameter learning (optimization) had not yet converged. In 
addition, hyperparameters such as learning rate might not be the 
optimal values. First, we tried to set learning rate as 1e−4, which is 
a value often-used in ADAM, but learning hardly proceeded. In this 
experiment, since the parameters are updated for each 
communication, parameter updating is performed 150 times during 
one image (= 30 frames). The learning rate must be set to a 
considerably small value to learn parameters properly. 

Figure 4 shows the experiment of handwritten digit recognition 
by D-GCN. The handwritten digits displayed in the background of 
the figure indicate each pixel value which is the only input to each 
agent. The small number displayed on each pixel is the recognition 
result of each agent at that point. The frame number and the correct 
answer of the handwritten digit image presented at that time are 
shown at the upper right of each figure. 

At the beginning (frame 0), the output values from each agent 
did not match at all. As frame number increased, a consensus was 
formed among agents, and most agents outputted the correct answer 
7. Although the consensus was destroyed when the input image 
suddenly switched to 2 at frame 30, as time (frame number) elapsed, 
all the agents again outputted correct results. 

Note that the consensus formation started in agents near the 
center of the image and spread around the peripheral part because 
the pixels near the center of the image had more information on the 
handwritten digit. 

5.2 Collective behavior with SwarmCNN 
As an application of a SwarmCNN, let us consider the collective 
animal behavior under predation risk. The “selfish herd” theory 
proposed by Hamilton is a pioneering study of this field [18]. He 
thought that the formation of herds is due to dilution of the 
predation risk by aggregation. That is, each individual acts to 
reduce its domain of danger (DOD), which is the area closest to the 
individual. Known concrete behavior rules of each individual to 
reduce DOD includes, for example, Nearest Neighbor (NN), 

Multiple NNs (3NN), Local Crowded Horizon (LCH), etc. [18–20]. 
In recent years, studies on what type of herd is formed under each 
behavioral rule are actively conducted [21–22].  

On the other hand, in the field of computer vision, Raynolds 
proposed well-known BOIDs rules [23]. The behavior of various 
herds can be reproduced by changing the intensity of the three rules 
of separation, alignment and cohesion. Recently, attempts have 
been made to optimize the intensities of the three rules by genetic 
algorithm to form herds under predation risk [24]. In these 
approaches, some fundamental behavioral rules are given in 
advance and the optimal combination of these rules is discussed. In 
this section, we try using SwarmCNN to derive the behavior rules 
from only the goal of reducing DOD. 

Let us consider a discrete-time system consisting of N  agents 
(fishes) moving on a 2 -dimensional plane as shown in Figure 1. 
The moving speed of all agents is fixed at v=0.003/timestep, and 
each agent can change the moving direction (head direction) only 
at each time step. Suppose that the agent 𝑖 suffers a penalty 𝐿௜(𝒙, 𝜽) 
depending on the position 𝒙 of the agents and the head directions 
𝜽. Specifically, the penalty 𝐿௜(𝒙, 𝜽) is assumed to be the sum two 
terms 𝐿௜

௉(𝒙, 𝜽) and 𝐿௜
ீ(𝒙, 𝜽), depending on the relative positions of 

the neighboring agents. When the agents move to minimize these 
penalties, a herd is formed. 

1. Proximity penalty. 
A collision risk arises if agents are too close together. If there 
exist other agents closer than a threshold distance 𝑟ଵ, agent 𝑖 
is penalized according to the distance to the other agents 

𝐿௜
௉(𝒙, 𝜽) = ෍ ቀ

𝑟ଵ

𝑟ఈ − 1ቁ

௝∈௃೔(௥భ)

 

where 𝛼 > 0 is a given parameter. 

2. Gap penalty. 
A predation risk arises if an agent (fish) is not surrounded by 
other agents. Arranging agents 𝑗 ∈ 𝐽௜(𝑟ଶ) within distance 𝑟ଶ 
from agent 𝑖 in ascending order of the relative angle 𝜙௜௝ , agent 

𝑖  is penalized according to the gap angle 𝑑௝భ
= 𝜙௜௝మ

− 𝜙௜௝భ
 

between adjacent agents 𝑗ଵ and 𝑗ଶ 

𝐿௜
ீ(𝒙, 𝜽) = ෍ 𝐿ௗ൫𝑑௝൯

௝∈௃೔(௥మ)

 

where 

𝐿ௗ(𝑑) = ൤
0 if 𝑑 ≤ 𝑑଴

(𝑑 − 𝑑଴)ఉ if 𝑑 ≥ 𝑑଴
 

is a gap penalty function with given parameters 𝑑଴ > 0 and 
𝛽 > 0. That is, if there exists another agent within the distance 
𝑟ଶ, agent 𝑖 need not worry about predators for the angle range 
of 𝑑଴ around the direction to that agent. This penalty, which 
corresponds to the concept of Hamilton's DOD, is convenient 
because it always has a finite value.  

 
In the experiment, MARL using a SwarmCNN with the action 
gradient method was used to form a herd. A SwarmCNN consisting 
of all the agents was being learned to estimate the penalty value of 
each agent. At the same time, the head direction of each agent was 
changed by the action gradient method based on the SwarmCNN. 

(9) 

(8)

(10)



  
 

 

Actually, the SwarmCNN estimates the discounted sum of future 
penalty ℒ୧(t) = ∑ 𝛾ఛஶ

ఛୀ଴ 𝐿௜(𝒙𝒕, 𝜽𝒕) of each agent, where 0 < 𝛾 <

1 is a discount factor.  
Figure 5 shows the architecture of SwarmCNN used in the 

experiment. It consists of three convolutional layers. The inputs to 
the SwarmCNN were a one-hot vector 𝒌 = {𝑘௜} representing the 
kind of each agent (if all agents are the same kind, 𝑘௜ = 1 for all 
agents) and the relative position {𝑟௜௝}, {𝜙௜௝} and the relative head 

direction {𝜂௜௝} between the agents, while the output was the future 
discount sum of the penalty value of each agent. The input to the 
first convolutional layer was the concatenation of four values 𝑘௝, 

𝑟௜௝ , 𝜙௜௝  and 𝜂௜௝  as Equation (5), while the input of the second and 
the third convolutional layer was simply is the output value of the 
previous layer. In addition, since the task is to estimate not a single 
value but N penalty values for every agent, the final outputs were 
calculated using JK-Nets (concat) decoder, which concatenates the 
value of each layer and performs linear conversion [25]. 

The SwarmCNN was learned by the state-action-reward-state-
action (SARSA) method with action gradient method. The learning 
was performed purely on-policy without the experiment replay. To 
stabilize learning, fixed target Q-network was used, where the 
target network was continuously updated by taking running 
average with momentum of 1e−3. 

In parallel with learning of the SwarmCNN, each agent changed 
the head direction by action gradient of the SwarmCNN at that 
time. Actually, the head direction of each agent was changed to 
decrease the average of estimated future penalties of all agents. 
Note that all agents ware assumed to cooperate unlike selfish herd 
problem. Table 2 shows the list of parameter values used for the 
experiment. 

Figure 6 shows the result of simulation with 100 fish agents on 
1 × 1 sized area with periodic (torus) boundary. Initially, all fishes 
ware swimming randomly (Figure 6a). They got closer to reduce 
the gap penalty, but they suffer the proximity penalty because they 
got too close to each other (Figure 6b). Finally, they formed a herd 
by keeping an appropriate distance from each other (Figure 6c). 
Individual fish agents were moving complicatedly, such as moving 
in opposite directions in the core and peripheral part of the herd. 

Figure 7 shows the results with surrounding walls instead of 
periodic boundaries. When an agent approaches the walls, it 
suffers a penalty of the same form as the proximity penalty. To 
make the walls recognizable by the fish agents (gray), a total of 
156 fixed (non-moving) “buoy” agents (blue) were placed at 
intervals of 0.025 along the walls. The {𝑘௜} values of the buoy 
agents were different from the fish agents. The buoy agents could 
be recognized by the fish agents but did not participate in the 
SwarmCNN of the fish agents. That is, they existed only as the 
inputs of the SwarmCNN and did not communicate with other 
agents. Finally, the fish agents formed a herd while avoiding the 
walls. 

Figure 8 shows the result if 10 predator agents (red) existed in 
addition to 100 fish agents (gray). The predator agents traveled in 
a straight line at constant speed 0.015 /timestep. The fish agent 
suffered a large proximity penalty as it approached the predator 
agents. Like the buoy agents, the predator agents were 

recognizable from the fish agent but did not participate in the 
SwarmCNN of the fish agents. In the figure, it is seen that the fish 
agent makes a herd while avoiding the predator agent. 

6 Conclusion 
We proposed a distributed graph convolutional network (D-GCN) 
for multi-agent systems, which estimates the macroscopic state of 
the entire system in a distributed and asynchronous manner. 
Although each agent operates autonomously while communicating 
with neighboring agents, the estimates of every agent coincide with 
the correct value. A D-GCN utilizes uniform consensus algorithms, 
not only the estimation (execution) but also learning can be 
executed asynchronously and in a distributed manner. 

In addition to that, the SwarmCNN, which is a D-GCN 
consisting of a group of agents moving on a plane, was proposed. 
When a SwarmCNN is used, collective animal behaviors such as 
herd formation arises from only the goal of reducing predation risk, 
without any pre-given fundamental behavior rules.  

  

 

 

Figure 5: Architecture of SwarmCNN. 
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Figure 3: The average of the cross-entropy loss for all agents. 

(Applied moving average for 3000 frames) 



  
 

 

 

   

Table 2: Parameter values for SwarmCNN.

(a) Initial state (b) Intermediate state (c) Final state 

Figure 4: Digit recognition by D-GCN. 

Figure 7: Herd formation 
with surrounding walls. 

Figure 8: Herd formation 
with predators. 

grey: fish agents 
blue: buoy agents 

grey: fish agents 
red: predator agents 

Figure 6: Herd formation by SwarmCNN.
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     Parameter value

　 　 (Conv. layer) 12

　 　 (Conv. layer) 0.1

　 　 (action gradient updating) 5.0

　 　 (Proximity penalty) 0.01

　　  (Proximity penalty) 1.0

　　  (Gap penalty) 0.1

　 　 (Gap penalty)

　 　 (Gap penalty) 1.5

optimizer algorithm ADAM

learning rate 1e-5

velocity/timestep (fish) 0.003

predetor's velocity/timestep 0.0015

　 　 (Proximity penalty for predetor) 0.2

　 　 (Proximity penalty for predetor) 1.0

　　  (Proximity penalty for wall) 1.5

　    (Proximity penalty for wall) 1.5
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