
MAGNet: Multi-agent Graph Network for Deep Multi-agent
Reinforcement Learning

Aleksandra Malysheva
JetBrains Research
St Petersburg, Russia

National Research University
Higher School of Economics

St Petersburg, Russia
malyshevasasha777@gmail.com

Daniel Kudenko
University of York

York, United Kingdom
JetBrains Research
St Petersburg, Russia

daniel.kudenko@york.ac.uk

Aleksei Shpilman
JetBrains Research
St Petersburg, Russia

National Research University
Higher School of Economics

St Petersburg, Russia
aleksei@shpilman.com

ABSTRACT
Over recent years, deep reinforcement learning has shown strong
successes in complex single-agent tasks, and more recently this
approach has also been applied to multi-agent domains. In this pa-
per, we propose a novel approach, called MAGNet, to multi-agent
reinforcement learning that utilizes a relevance graph representa-
tion of the environment obtained by a self-attention mechanism,
and a message-generation technique inspired by the NerveNet
architecture. We applied our MAGnet approach to the synthetic
predator-prey multi-agent environment and the Pommerman game
and the results show that it significantly outperforms state-of-
the-art MARL solutions, including Multi-agent Deep Q-Networks
(MADQN), Multi-agent Deep Deterministic Policy Gradient (MAD-
DPG), and QMIX.

KEYWORDS
multi-agent system; relevance graphs; deep-learning

1 INTRODUCTION
A common difficulty of reinforcement learning in a multi-agent
environment (MARL) is that in order to achieve successful coor-
dination, agents require information about the relevance of envi-
ronment objects to themselves and other agents. For example, in
the game of Pommerman [9] it is important to know how relevant
bombs placed in the environment are for teammates, e.g. whether
or not the bombs can threaten them. While such information can
be hand-crafted into the state representation for well-understood
environments, in lesser-known environments it is preferable to
derive it as part of the learning process.

In this paper, we propose a novel method, namedMAGNet (Multi-
Agent Graph Network), to learn such relevance information in form
of a relevance graph and incorporate this into the reinforcement
learning process. Furthermore, we propose the use of message gen-
eration techniques along this graph. Those techniques were inspired
by the NerveNet architecture [18], which has been introduced in the
context of robot locomotion, where it has been applied to a graph
of connected robot limbs. MAGNet uses a similar approach, but
bases the message generation on the learned relevance graph (see
Section 3. The final decision making stage accumulates messages
and calculates the best action for every agent.

The contribution of this work is a novel technique to learn ob-
ject and agent relevance information in a multi-agent environment,

and incorporate this information in deep multi-agent reinforce-
ment learning. We applied MAGNet to the synthetic predator-prey
game, commonly used to evaluate multi-agent systems [11] and the
popular Pommerman [9] multi-agent environment, and achieved
significantly better performance than state-of-the-art MARL tech-
niques including MADQN [3], MADDPG [7] and QMIX [14]. Addi-
tionally, we empirically demonstrate the effectiveness of utilized
self-attention [17], graph sharing and message generating modules
with an ablation study.

2 DEEP MULTI-AGENT REINFORCEMENT
LEARNING

In this section we describe the state-of-the-art deep reinforcement
learning techniques that were applied to multi-agent domains. The
algorithms introduced below (MADQN,MADDPG, andQMIX)were
also used as evaluation baselines in our experiments.

Reinforcement learning is a paradigm which allows agents to
learn by reward and punishment from interactions with the environ-
ment [15]. The numeric feedback received from the environment is
used to improve the agent’s actions.

The majority of work in the area of reinforcement learning ap-
plies a Markov Decision Process (MDP) as a mathematical model
[13]. An MDP is a tuple

(
S,A,T ,R), where S is the state space, A

is the action space, T (s,a, s ′) = Pr (s ′ |s,a) is the probability that
action a in state s will lead to state s ′, and R(s,a, s ′) is the imme-
diate reward r received when action a taken in state s results in a
transition to state s ′. The problem of solving an MDP is to find a
policy (i.e., mapping from states to actions) which maximises the
accumulated reward. When the environment dynamics (transition
probabilities and reward function) are available, this task can be
solved using policy iteration [1].

We can define multi-agent extension of MDPs through partially
observable MDPs (POMDPs)[12], where state is defined by a set of
agents’ observations o1, . . . ,oN , and action is defined by a set of
individual agent’s actions a1, . . . ,aN . The problem of solving an
multi-agent POMDP is to find policies πi : Oi ×Ai → [0, 1], which
produce the next state according to the state transition function
and maximize the individual accumulated reward. If we consider a
game with N agents the aim is to find policies π = π1, . . . ,πN that
maximize the expected reward Ji = Eo∼pπ a∼πi [R] for every agent
i , where pπ is the distribution of states visited with policy π .

We do not describe the NervNet [18] approach in detail, since
it was not intended to solve multi-agent reinforcement learning

tasks, but rather a complex single agent. We present the adaptation
of NerveNet message passing system in Section 3.2.

2.1 Multi-agent Deep Q-Networks
Q-learning is a value iteration method that tries to predict future
rewards from the current state and an action. This algorithm applies
so called temporal-difference updates to propagate information
about values of state-action pairs, Q(s,a). After each transition,
(s,a) → (s ′, r), in the environment, it updates state-action values
by the following formula:

Q(s,a) ← Q(s,a) + α[r + γ maxQ(s ′,a′) −Q(s,a)] (1)
where α is the learning rate and γ is the discount factor. It modi-

fies the value of taking action a in state s , taking into account the
received reward r .

Deep Q-learning utilizes a neural network to predict Q-values
of state-action pairs. [10]. This so-called deep Q-network is trained
to minimize the difference between predicted and actual Q-values:

y = r + γ max
a

Qpast (s ′,a′) (2)

L(θ) = Es∼ρπ ,a∼p(s)[yi −Q(s,a |θ)]
2 (3)

where y is the best action according to the previous deep Q-
network, θ is the parameter vector of the current Q-function ap-
proximation and a ∼ p(s) denotes all actions that are permitted in
state s .

TheMulti-agent Deep Q-Networks (MADQN, [3]) approachmod-
ifies this process for multi-agent systems by performing training in
two repeated steps. First, they train agents one at a time, while keep-
ing the policies of other agents fixed. When the agent is finished
training, it distributes its policy to all of its allies as an additional en-
vironmental variable. This approach shows the best results among
other modifications of DGN algorithm.

2.2 Multi-agent Deep Deterministic Policy
Gradient

When dealingwith continuous action spaces, themethods described
above can not be applied. To overcome this limitation, the actor-
critic approach to reinforcement learning was proposed [16]. In this
approach an actor algorithm tries to output the best action vector
and a critic tries to predict the value function for this action.

Specifically, in the Deep Deterministic Policy Gradient (DDPG
[6]) algorithm two neural networks are used: µ(s) is the actor net-
work that returns the action vector. Q(s,a) is the critic network,
that returns the Q value, i.e. the value estimate of the action of a in
state s .

The gradient for the critic network can be calculated in the
same way as the gradient for Deep Q-Networks described above
(Equation 3). Knowing the critic gradient ∇aQ we can then compute
the gradient for the actor as follows:

∇θ µ J = Es∼ρπ [∇aQ(s,a |θ
q)|s = st ,a = µ(s |θ µ)] (4)

where θq and θ µ are parameters of critic and actor neural net-
works respectively, and ρπ (s) is the probability of reaching state s
with policy π .

The authors of [8] proposed an extension of this method by
creating multiple actors, each with its own critic, where each critic
takes in the respective agent’s observations and actions of all agents.
This then constitutes the following value function for actor i:

J (θi) = Es∼pπ ,a∼π θ [∇θi loдπi (ai |oi)Q
π
i (oi ,a1, . . . ,aN)] (5)

This Multi-agent Deep Deterministic Policy Gradient method
showed the best results among widely used deep reinforcement
learning techniques in continuous state and action space.

2.3 QMIX
Another recent promising approach to deep multi-agent reinforce-
ment learning is the the QMIX [14] method. It utilizes individual
Q-functions for every agent and joint Q-function for a team of
agents. The QMIX architecture consists of three types of neural
networks:
• Agent networks evaluate individual Q-functions for agents
taking in the current observation and the previous action.
• A Mixing network takes as input individual Q-functions
from agent networks and a current state and calculates a
joint Q-function.
• Hyper networks add an additional layer of complexity to
the mixing network. Instead of passing the current state to
the mixing network directly, hyper networks use it as input
and calculate weight multipliers at each level of the mixing
network. We refer the reader to the original paper for a more
complete explanation [14].

While authors demonstrate that this approach outperforms both
MADQN and MADDPG methods, it is yet to be tested by time.
Nevertheless, we included it in the number of our baselines.

3 MAGNET APPROACH AND
ARCHITECTURE

Figure 1 shows the overall network architecture of our MAGNet
approach. The whole process can be divided into a relevance graph
generation stage (shown in the left part) and a decision making
stages (shown in the right part). We see them as a regression and
classification problem respectively. In this architecture, the concate-
nation of the current state and previous action forms the input of
the models, and the output is the next action. The details of the two
processes are described below.

3.1 Relevance graph generation stage
In the first part of our MAGNet approach, a neural network is
trained to produce a relevance graph: a matrix |A| × (|A| + |O |),
where |A| is the number of agents and |O | is the maximum num-
ber of environment objects. The relevance graph represents the
relationship between agents and between agents and environment
objects. The higher the absolute weight of an edge between an
agent a and another agent b or object o is, the more important b or
o are for the achievement of agent a’s task. The graph is generated
by MAGNet from the current and previous state together with the
respective actions.

Figure 6B shows an example of such a graph for two agents in the
game of Pommerman. The displayed graph only shows those edges

2

Figure 1: The overall network architecture of MAGNet. Left section shows the graph generation stage. Right part shows the
decision making stage. X (t) denotes the state of the environment at step t . a(t) denotes the action taken by the agent at step t .
GGN refers to Graph Generation Network see Section 3.1.

which have a non-zero weight (thus there are objects to which
agent 1 is not connected in the graph).

To generate this relevance graph, we train a neural network via
back-propagation to output a graph representation matrix. The
input to the network are the current and the two previous states
(denoted byX (t),X (t−1), andX (t−2) in Figure 1), the two previous
actions (denoted by a(t − 1) and a(t − 2)), and the relevance graph
produced at the previous time step (denoted byдraph(t−1)). For the
first learning step (i.e. t = 0), the input consists out of three copies
of the initial state, no actions, and a random relevance graph. The
inputs are passed into a convolution and pooling layer, followed by
a padding layer, and then concatenated and passed into fully con-
nected layer and finally into the graph generation network (GGN).
In this work we implement GGN as either a multilayer perceptron
(MLP) or a self-attention network, which uses an attention mecha-
nism to catch long and short term time-dependencies. We present
the results of both implementations in Table 1. The self-attention
network is an analogue to a recurrent network such as LSTM, but
takes much less time to compute [17]. The result of the GGN is

fed into a two-layer fully connected network with dropout, which
produces the relevance graph matrix.

The loss function for the back-propagation training is composed
of two parts:

L = | |W t −W t−1 | |22 +
∑

ξ(v,u)∈Ξt
(wt
(v,u) − s(ξ(v,u)))

2 (6)

The first component is based on the squared difference between
weights of edges in the current graphW t and the one generated in
the previous stateW t−1. The second iterates through events Ξt at
time t and calculates the square difference between the weight of
edge (v,u) between objects that are involved in that event ξ(v,u) and
the event weight s(ξ(v,u)). In the base MAGNet configuration we
use a simple heuristic rule for event weights: 1 for a positive event
(i.e injuring a prey in predator-prey game) and −1 for a negative one
(i.e., being blown-up in the game of Pommerman). We do explore
the benefits of using a more complex approach and adding domain
specific heuristics in Section 4.9.

3

We can train the neural network for graph generation without
training the agents network if some pre-trained agent is provided.
Both Pommerman and predator-prey environments have these
default agents. If fact, we found out that the better way to train
MAGNet is to first pre-train the graph generation and then add the
agent networks (see also Section 4.8).

We can train individual relevance graphs for every agent or
one shared graph (GS) that is the same for all agents on the team.
We performed experiments to determine which way is better (see
Table 1).

3.2 Decision making stage
The agent AI responsible for decisionmaking is also represented as a
neural network whose inputs are accumulated messages (generated
by a method inspired by NerveNet [18] and described below) and
the current state of the environment. The output of the network is
an action to be executed.

The graphG generated at the last step isG = (V ,E) where edges
represent relevance between agents and objects. Every vertex v
has a type b(v). Types of verteces for both test environments are
described in Section 4.3.

The final (action) vector is computed in 4 stages throughmessage
passing system, similar to the NerveNet system [18]. Stages 2 and
3 are repeated for a specified number of message propagation steps
at every step of the game.

(1) Initialization of information vector. Each vertex v has
an initialization network MLPb(v)init associated with it accord-
ing to it’s type b(v) that takes as input the current individual
observation Ov and outputs initial information vector µ0v
for each vertex.

µ0v = MLPb(v)init (Ov) (7)

(2) Message generation. Message generation performs in it-
erative steps. At message generation step τ +1 (not to be con-
fusedwith enviromental time t) message networksMLPc(v,u)mess
compute output messages for every edge (v,u) ∈ E based on
type of the edge c(v,u).

mτ
(v,u) = MLPc(v,u)m (µτv) (8)

(3) Message processing. Information vectormτ+1
v at message

propagation step τ is updated by update network LSTMb(v)
up

associated with it according to it’s type b(v), that takes as
input a sum of all message vectors from connected tov edges
multiplied by the edge relevancew(v,∗) and information at
previous stepmτ

v .

µτ+1v = LSTMb(v)
up (µ

τ
v ,

∑
mτ
(v,∗)w(v,∗)) (9)

(4) Choice of action.All vertices that are associatedwith agents
have a decision network MLPb(v)choise which takes as an input
its final information vectormτ

v and compute the mean of the
action of the Gaussian policy.

av = MLPb(v)choise(µ
τ
v) (10)

Since message passing system outputs an action, we view it as an
actor in the DDPG actor-critic approach [6], and train it accordingly.

Figure 2: Synthetic predator-prey game. In order to win the
game, predators (red) must catch all three prey (green) that
are moving at faster speed. Game lasts 500 iterations. Ran-
dom obstacles (grey) are placed in the environment at the
start of the game.

4 EXPERIMENTS
4.1 Environments
In this paper, we use two popular multi-agent benchmark environ-
ments for testing, the synthetic multi-agent predator-prey game
[11], and the Pommerman game [9].

In the predator-prey environment, the aim of the predators is to
kill faster moving prey in 500 iterations. The predator agents must
learn to cooperate in order to surround and kill the prey. Every prey
has a health of 10. Predator coming close to the prey lowers the
prey’s health by 1 point. Lowering the prey health to 10 kills the
prey. If even one prey survives after 500 iterations, the prey team
wins. Random obstacles are placed in the environment at the start
of the game (seen as grey circles in Figure 2). The starting positions
of predators and prey can be seen in Figure 2.

The Pommerman game is a popular environment which can be
played by up to 4 players. The multi-agent variant has 2 teams of 2
players each. This game has been used in recent competitions for
multi-agent algorithms, and therefore is especially suitable for a
comparison to state-of-the-art techniques.

In Pommerman, the environment is a grid-world where each
agent can move in one of four directions, lay a bomb, or do nothing.
A grid square is either clear (which means that an agent can enter
it), wooden, or rigid. Wooden grid squares can not be entered, but
can be destroyed by a bomb (i.e. turned into clear squares). Rigid
squares are indestructible and impassable. When a wooden square
is destroyed, there is a probability of items appearing, e.g., an extra
bomb, a bomb range increase, or a kick ability. Once a bomb has
been placed in a grid square it explodes after 10 time steps. The
explosion destroys any wooden square within range 1 and kills any

4

agent within range 4. If both agents of one team die, the team loses
the game and the opposing team wins. The map of the environment
is randomly generated for every episode.

The game has two different modes: free for all and team match.
Our experiments were carried out in the team match mode in or-
der to evaluate the ability of MAGnet to exploit the discovered
relationships between agents (e.g. being on the same team).

We represent states in both environments as D ×D ×M tensor S ,
where D ×D are the dimensions of the field andM is the maximum
possible number of objects. S[i, j,k] = 1 if object k is present in
[i, j] space and is 0 otherwise. Predator-prey state is 64 × 64 × 20
tensor, and Pommerman state is 11 × 11 × 30.

4.2 Evaluation Baselines

Figure 3: MAGNet variants compared to state-of-the-art
MARL techniques in the predator-prey (top) and Pom-
merman (bottom) environments. MAGNet-NO-PT refers to
MAGNet with not pretraining for graph generating network
(Section 4.8). MAGNet-DSH refers to MAGNet with domain
specific heuristics (Section 4.9). Every algorithm trained by
playing against a default environment agent for a number of
games (episodes) and a respective win percentage is shown.
Default agents are provided by the environments. Shaded ar-
eas show the 95% confidence interval from 20 launches.

In our experiments, we compare the proposed method with state-
of-the-art reinforcement learning algorithms in two environments.
One is the predator-prey game [11] and the other is the Pommerman
game simulated in team match mode. Figure 3 shows a comparison
with MADQN [3], MADDPG [7] and QMIX [14] algorithms. Each
of thees algorithms trained by playing a number of games (i.e.
episodes) against the heuristic AI, and the respective win rates
are shown. All graphs display a 95% confidence interval over 20
launches to illustrate the statistical significance of our results. The
parameters chosen forMADQN the baselines through parameter
exploration were set as follows.

The network for predator-prey environment consists of seven
convolutional layers with 64 5x5 filters in each layer followed by
five fully connected layers with 512 neurons each with residual
connections [4] and batch normalization [5] that takes an input an
128x128x6 environment state tensor and one-hot encoded action
vector (a padded 1x5 vector) and outputs a Q-function for that
state-action pair.

The network for Pommerman consists of five convolutional lay-
ers with 64 3x3 filters in each layer followed by three fully connected
layers with 128 neurons each with residual connections and batch
normalization that takes an input an 11x11x4 environment state
tensor and one-hot encoded action vector (a padded 1x6 vector)
that are provided by the Pommerman environment and outputs a
Q-function for that state-action pair.

For our implementation of MADDPG we used a multilayer per-
ceptron (MLP) with 3 fully connected layers with 512-128-64 neu-
rons for both actor and critic for predator-prey game and 5 fully
connected layer with 128 neurons in each layer and for the critic
and a 3 layer network with 128 neurons in each layer for the actor
in the game of Pommerman.

Parameter exploration forQMIX led to the following settings for
both environments. All agent networks are DQNs with a recurrent
layer of a Gated Recurrent Unit (GRU [2]) with a 64-dimensional
hidden state. The mixing network consists of a single hidden layer
of 32 neurons. Hyper networks consists of a single hidden layer with
32 neurons with a ReLU. As in the original paper, we set learning
rate linearly from 1.0 to 0.05 over first 50k time steps and than keep
it constant. As we can seen from Figure 3, our MAGnet approach
significantly outperforms current state-of-the-art algorithms.

4.3 MagNet network training
In both environments we first trained the graph generating network
on 50,000 episodes with the same parameters and with the default
AI as the decision making agents. Both predator-prey and Pommer-
man environments provide these default agents. After this initial
training, the default AI was replaced with the learning decision
making AI described in section 3. All learning graphs show the
training episodes starting with this replacement.

Table 1 shows results for different MAGNet variants in terms
of achieved win percentage against a default agent after 600,000
episodes in the predator-prey game and a 1,000,000 episodes in
the game of Pommerman. The MAGNet variants are differing in
the complexity of the approach, starting from the simplest version
which takes the learned relevance graph as a direct addition to
the input, to the version incorporating message generation, graph

5

sharing, and self-attention. The table clearly shows the benefit of
each extension.

Table 1: Influence of different modules on the performance
of the MAGnet model. Modules are self-attention (SA),
graph sharing (GS), and message generation (MG). Environ-
ments are predator-prey game (PP) and the Pommerman
game (PM).

MAGnet modules Win % PP Win%PM
SA GS MG
+ + + 74.2 ± 1.2 76.3 ± 0.7
+ + - 61.3 ± 0.9 56.7 ± 1.8
+ - + 63.2 ± 1.3 62.4 ± 1.7
+ - - 43.3 ± 1.5 54.5 ± 2.6
- + + 69.3 ± 1.5 67.1 ± 1.9
- + - 39.3 ± 2.0 52.0 ± 1.7
- - + 41.5 ± 1.4 45.2 ± 3.6
- - - 25.1 ± 2.3 32.7 ± 5.9

Each of the three extensions with their hyper-parameters are
described below:
• Self-attention (SA). We can train Graph Generating Network
(GGN) as a simple multi-layer perceptron (number of layers
and neurons was varied, and a network with 3 fully con-
nected layers 512-128-128 neurons achieved the best result)
or as a self-attention transformer network (SA) layer [17]
with default parameters.
• Graph Sharing (GS): relevance graphs were trained individ-
ually for agents, or in form of a shared graph for all agents
on one team.
• Message Generation (MG): the message generation module
was implemented as either a MLP or a message generation
(MG) architecture, as described in Section 3.2.

4.4 Self-attention and graph sharing in
training a relevance graph

We also analyzed the influence of self-attention module and graph
sharing on graph generation loss function during the pretraining
stage.

Figures 4 and 5 show the graph generation module loss values 6
for predator-prey and Pommerman environments respectively with
and without a self-attention module and with or without graph
sharing. As we can see from these figures, both self-attention and
graph sharing significantly improve graph generation in terms
of speed of convergence and final loss value. Furthermore, their
actions are somewhat independent which is seen in that using them
together gives additional improvement.

4.5 Relevance graph visualization
Figure 6 shows examples of relevance graphs with the correspond-
ing environment state. Red vertices denote friendly team agents,
purple vertices denote the agents on the opposing team, and the
other vertices denote environment objects such as walls (green)
and bombs (black). The lengths of edges represent their absolute

Figure 4: Loss value in training the graph generatorwith and
without a self-attention module (SA+/-) and with or without
graph sharing (GS+/-) in predator-prey environment.

Figure 5: Loss value in training the graph generatorwith and
without a self-attention module (SA+/-) and with or without
graph sharing (GS+/-) in Pommerman environment.

weights (shorter edge equals higher weight, i.e. higher relevance).
The graph in Figure 6B is shared, while Figure 6C shows individual
graphs for both agents on the team.

As can be seenwhen comparing the individual and shared graphs,
in the shared case agent 1 and agent 2 have different strategies re-
lated to the opponent agents (agents 3 and 4). Agent 4 is of relevance
to agent 1 but not to agent 2. Similarly, agent 3 is of relevance to
agent 2, but not to agent 1. In contrast, when considering the in-
dividual graphs, both agents 3 and 4 have the same relevance to
agents 1 and 2. Furthermore, it can be seen from all graphs that
different environment objects are relevant to different agents.

4.6 MAGNet parameters
We define vertex types b(v) and edge types c(e) in relevance graph
as follows:

b(v) ∈ {0, 1, 2, 3} in case of predator-prey game that corresponds
to: "predator on team 1 (1, 2, 3)", "predator on team 2 (4, 5, 6)",
"prey", "wall". Every edge has a type as well: c(e) ∈ {0, 1, 2}, that

6

Figure 6: Visualization of the relevance graph for Pommerman game. (A) Corresponding game state. (B) Shared graph. (C)
Agent-individual graphs. Vertex color corresponds to the type of the object. Olive — wooden wall, black — bomb, green — blast
power bonus, red — trained agents, i.e., our team, purple — default agents, i.e., opposing team.

corresponds to “edge between predators within one team”, “edge
between predators from different teams” and “edge between the
predator and the object in the environment or prey”.

b(v) ∈ {0, 1, 2, 3, 4, 5, 6} in case of Pommerman game that corre-
sponds to: "ally", "enemy", "placed bomb" (about to explode), "in-
crease kick ability", "increase blast power", "extra bomb" (can be
picked up). Every edge has a type as well: c(e) ∈ {0, 1}, that corre-
sponds to “edge between the agents” and “edge between the agent
and the object in the environment”.

We tested the MLP and message generation network with a
range of hyper-parameters. In case of predator-prey game, the MLP
with 3 fully connected layers with 512-512-128 neurons, while for
the message generation network 5 layers with 512-512-128-128-32
neurons was found to produce best result. For the Pommerman
environment, the MLP with 3 fully connected layers 1024-256-64
neurons achieved the best result, while for the message generation
network worked best with 2 layers with 128-32 neurons. In both
cases 5 message passing iterations showed the best result.

Dropout layers were individually optimized by grid search in [0,
0.2, 0.4] space. We tested two convolution sizes: [3x3] and [5x5].
[5x5] convolutions showed the best result. Rectified Linear Unit
(ReLU) transformation was used for all connections.

4.7 Heuristic graph only
For comparison and justification of the necessity of the graph gen-
eration stage, we carried out experiments using only heuristic data
graph. In this experiment, instead of the graph generated in the
graph generation stage, we set the graph weights according to em-
pirical rule (wt

(v,u) = s(ξ(v,u)), ξ(v,u) ∈ Ξ
t . This approach showed

very poor results. In fact, the network in this case fails to train at
all. This is most likely due to the fact that heuristic graph matrix is
almost always filled with zeros and that in turn breaks the message
passing system.

4.8 No pre-training
With regards to pre-training of the graph generating network we
need to answer the following questions. First, we need to determine
whether or not it is feasible to train the network without an exter-
nal agent for pre-training. In other words, can we simultaneously
train both the graph generating network and the decision making
networks from the start. Second, we need to demonstrate whether
pre-training of a graph network improves the result.

To do that, we performed experiments without the pre-training
of the graph network. Figure 3 show the results of those experiments
(line MAGNet-NO-PT). As can be seen, the network indeed can

7

learn without pre-training, but pre-training significantly improves
the results. This may be due to decision making error influencing
the graph generator network in a negative way.

4.9 Domain specific heuristics
We also performed experiments to see whether or not additional
knowledge about the environment can improve the results of our
method. To incorporate this knowledge, we change the weights
s(ξ) in the Equation 6 from −1/1 for a negative/positive event to
weights evaluated by human experts according to the environment.

For example, in the Pommerman environment we set s(ξ) cor-
responding to our team agent killing an agent from the opposite
team to 100, and the s(ξ) corresponding to an agent picking up a
bomb to 25. In the predator-prey environment, if a predator kills a
prey, we set the event’s weight to to 100. If a predator only wounds
the prey, weight for that event is set to 50.

As we can see in Figure 3 (line MAGNet-DSH), the model that
uses this domain knowledge about the environment trains faster
and performs better. It is however important to note that a MAGNet
network with a simple heuristic of -1/1 for negative and positive
events still outperforms current state-of-the-art methods. For future
research we consider creating a method for automatic assignment
of the event weights.

5 CONCLUSION
In this paper we presented a novel method, MAGNet, for deep multi-
agent reinforcement learning incorporating information on the
relevance of other agents and environment objects to the RL agent.
We also extended this basic approach with various optimizations,
namely self-attention, shared relevance graphs, and message gener-
ation inspired by NerveNet. The MAGNet variants were evaluated
on the popular predator-prey and Pommerman game environments,
and compared to state-of-the-art MARL techniques. Our results
show that MAGNet significantly outperforms all competitors.

REFERENCES
[1] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P

Bertsekas. 1995. Dynamic programming and optimal control. Vol. 1. Athena
scientific Belmont, MA.

[2] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2015.
Gated feedback recurrent neural networks. In International Conference onMachine
Learning. 2067–2075.

[3] Maxim Egorov. 2016. Multi-agent deep reinforcement learning. (2016).
[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[5] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[6] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[7] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems. 6379–6390.

[8] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems. 6379–6390.

[9] Tambet Matiisen. 2018. Pommerman baselines. https://github.com/tambetm/
pommerman-baselines. (2018).

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[11] Igor Mordatch and Pieter Abbeel. 2018. Emergence of Grounded Compositional
Language in Multi-Agent Populations. In AAAI Conference on Artificial Intelli-
gence.

[12] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. In IJCAI, Vol. 3. 1025–1032.

[13] Martin L Puterman. 2014. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons.

[14] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2018. QMIX: monotonic value
function factorisation for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1803.11485 (2018).

[15] Richard Stuart Sutton. 1984. Temporal Credit Assignment in Reinforcement Learn-
ing. Ph.D. Dissertation. University of Massachusetts Amherst. AAI8410337.

[16] Richard S Sutton, David AMcAllester, Satinder P Singh, and YishayMansour. 2000.
Policy gradient methods for reinforcement learning with function approximation.
In Advances in neural information processing systems. 1057–1063.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Processing Systems. 5998–6008.

[18] Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. 2018. Nervenet: Learning
structured policy with graph neural networks. Proceedings of the International
Conference on Learning Representations (2018).

8

https://github.com/tambetm/pommerman-baselines
https://github.com/tambetm/pommerman-baselines

	Abstract
	1 Introduction
	2 Deep Multi-Agent Reinforcement Learning
	2.1 Multi-agent Deep Q-Networks
	2.2 Multi-agent Deep Deterministic Policy Gradient
	2.3 QMIX

	3 MAGnet approach and architecture
	3.1 Relevance graph generation stage
	3.2 Decision making stage

	4 Experiments
	4.1 Environments
	4.2 Evaluation Baselines
	4.3 MagNet network training
	4.4 Self-attention and graph sharing in training a relevance graph
	4.5 Relevance graph visualization
	4.6 MAGNet parameters
	4.7 Heuristic graph only
	4.8 No pre-training
	4.9 Domain specific heuristics

	5 Conclusion
	References

