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ABSTRACT
We propose a new method for policy transfer in reinforcement

learning problems that require fast responses adapted from incom-

plete, prior knowledge. We consider the setting where the source

and target tasks share similar objectives but differ in the transition

dynamics, e.g., for a robotic agent operating in similar but challeng-

ing environments, such as care homes and hospital wards. Policy

reuse is effected by identifying the sub-spaces that are different in

the target environment, where the source knowledge is insufficient.

We present an exploration strategy that selectively and efficiently

explores the target task. We demonstrate the flexibility of the pro-

posed method by incorporating different exploration mechanisms

for learning. We empirically show that our method performs better

in terms of jump starts and average rewards, as compared to the

state-of-the-art policy reuse methods.
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1 INTRODUCTION
Using past knowledge to bootstrap learning reduces the number of

samples required to learn an optimal policy in reinforcement learn-

ing (RL). Knowledge reuse to quickly adapt to new environments

is commonly effected through transferring policies, state-action

trajectories, action-value functions, and other components in the

framework [28]. Transfer mechanisms can improve various aspects

of learning including minimizing exploration in the target task, pro-

viding a better jump start to the learning, and reducing the learning

time [35].

We propose a selective exploration and policy transfer algorithm

(SEAPoT) to solve the class of problems that would benefit from

reusing previous knowledge maximally, while adapting to changes

where the prior knowledge is insufficient. Many real-life applica-

tions like assistive robots in geriatric care homes and hospital wards

would benefit from our method. We focus on the settings where

the source and target tasks differ in the transition dynamics and/or

reward functions. We define similarity using the distance between

the corresponding state-action transition distributions of the two

tasks. The similarity in the environments is captured in a shared

state-action space, and the difference is represented in a distribution

of environmental elements leading to different transition dynamics.

The policy transfer approach results in strictly less information

being transferred across the tasks. The agent follows the source

policy until a change is detected in the environment. Limited explo-

ration is performed in the target task to circumvent the surrounding

region of the changed point until a known state with respect to the

source task is reached. The agent then continues to follow the

source task policy from this known state. We propose a new ap-

proach to identify changes across tasks and construct sub-space

to focus on the most relevant partition of the task’s state space to

limit the exploration.

Current policy reuse methods include gathering expert sugges-

tions related to spatial hints [10], probabilistic exploration [16], ex-

tracting partial policies using the structure of the policy space [22]

and reward shaping to define target task policy from source pol-

icy [7]. Unlike previous methods, our approach does not require

expert suggestions; exploration is kept minimal in the target task,

and no knowledge of the source policy structure is required for

effective transfer. Another class of policy reuse mechanism follows

a reactive approach, by first evaluating a policy selected from a set

of learned policies, determining the returns, and choosing the best

policy [1]. In contrast, our approach adapts to the changes in the

task when the need arises. We adopt a change detection mechanism

that obviates the explicit specification of the source and the target

task.

2 BACKGROUND
A Markov Decision Process (MDP) is often used to model the un-

derlying environment in RL. A MDP is a tuple ⟨S,A,T ,R⟩ where
S is a finite set of states, A is a finite set of actions. The transition

function T describes the probability of reaching state s ′ when ex-

ecuting action a in state s , i.e., T (s,a, s ′) = P(s ′ |s,a). The reward
function, R, represents the one-time reward received by executing

action a in state s . A policy is the mapping from states to actions

(π : S → A); the policy which maximizes the cumulative reward

(optimal policy), π∗, is the solution to the MDP.

In model-based RL, the agent first estimates the transition and

reward functions, and then computes the optimal policy using these

estimates. The knowledge encoded in the model can be transferred

across the tasks. In this work, we adopt the popular R-max explo-

ration strategy [6], where the agent constructs a fictitious model

that gives maximal reward to state-action pairs that are not explored

sufficiently. The R-max agent’s optimal behavior in the fictitious

model leads to a balance of exploration and exploitation in the

actual model. We represent each state by a vector of features as,

also known as Factored MDP [21].

Transfer learning in RL involves a set of tasks where the agent

has learned the policy, the source tasks, and a set of tasks that are

new, the target tasks. A task, in our case, can be informally described

as an environment (modeled using MDP) with known set of goal

states where the agent acts. The agent can reuse various forms of

knowledge such as value functions, policies, etc., learned in the
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Figure 1: Change detection when an obstacle is added (top)
and removed (bottom)

source in a target task [28, 35]. We focus on policy transfer in this

work.

3 SELECTIVE EXPLORATION FOR POLICY
TRANSFER

The agent is equipped with the solution(s) of previously solved

task(s). When the agent faces a new task, it reuses the source knowl-

edge, so long as it is applicable and reusable in the target task. The

agent uses a change-detection mechanism to identify deviations

from its prior knowledge. When the environment changes, the

source knowledge becomes insufficient to solve the new task and

the agent has to adapt to the changes detected. The agent does

so by constructing a sub-space that encompasses the changed re-

gion of the target task. Learning takes place in this sub-space to

obtain a policy local to the changed region. The main components

in our policy transfer method (called SEAPoT) are Bayesian change

detection and selective exploration.

3.1 Change detection
Changepoints split the time series data into disjoint segments such

that, given a changepoint, data prior to it and data appearing af-

ter are independent of each other. Changepoints in the agent’s

observations in a particular state, s , correspond to changes in the

environment as observed in s . We use Bayesian changepoint detec-

tion [3, 15], which can effectively handle noisy time series data. We

use the product partition approach [3]. In this approach, the time

series data is divided into partitions, such that data in each partition

belongs to different probability models. The inference problem thus

reduces to identifying the partition given the observation.

We model the agent’s state features as time series data and use

it to perform change detection. In the example that follows, the

state is a tuple (⟨x,y, θ⟩, δ ), where the first three terms determine

the location and the orientation of the agent and the last term is

the value of the distance sensor. Figure 1 shows an example of how

the change detection mechanism works using the observations

from one particular state in the system. The environment is a 5 × 5

grid world. The red curve shows the value of δ for a particular

location and orientation, (⟨x,y, θ⟩). We can see (from the top image)

that initially the sensor readings has a mean value of around 5.5

units, in the new environment, the reading reduces, close to zero.

This indicates there is an obstacle in the environment at this point.

The change detection algorithm correctly shows a high change

likelihood at this data point (the blue spike). Change detection

calculations happen in each state in the environment.

3.2 Selective exploration
When the agent encounters a changed environment, its past knowl-

edge is insufficient to complete the task. Now the agent selectively

explores the sub-space, which captures the changed region of the

environment, to learn in the new task. Selective exploration com-

prises three steps. First, identify and extract the sub-space where

the previous knowledge is not applicable. As we show later, the

extracted sub-space forms a well-defined MDP that is much smaller

than the original task MDP. Next, the agent solves this smaller MDP,

to obtain a local policy. Finally, the agent composes the target task

policy using the source task policy and the local policy obtained by

solving the sub-space MDP.

Sub-space extraction
We exploit the agent’s knowledge of the source task to solve

the target task. We use a breadth-first like mechanism to extract

the sub-space MDP from the parent task. From the state where the

environment change is detected, we expand the “horizon” to look

ahead n-steps. This enlarged view of the states surrounding the

current state forms the sub-space. The expansion follows from the

notion of adjacency of states and hence their reachability from the

current state. We define these formally below. Once we select the

states for selective exploration, we have to determine when the

exploration should stop. This is guided by the notion of frontier

states that demarcate the current sub-space and rest of the state

space in the parent task. Once we have these information we can

develop a method to extract a smaller, sub-space MDP from the

parent task.

Definition 3.1 (Adjacency). A state si is adjacent to a state sj
(si , sj ∈ S), if there is some action a ∈ A such that it induces a

transition between si and sj , i.e., T (si ,a, sj ) > 0.

Definition 3.2 (Reachability). A state sj is reachable from state si ,
if sj is adjacent to si or some sk that is reachable from si .

Definition 3.3 (n-step closure). The n-step closure of state si ,
Cn (si ), is the set of all states reachable from si by taking n actions.

Definition 3.4 (Frontier states). The set of states that can be

reached from, but outside, the n-step closure on executing one

action form the frontier states of the closure. That is, F (Cn (si )) =
{t | for any s ∈ Cn (si ), T (s,a, t) > 0, ∀a ∈ A′∧ {t} ∩Cn (si ) = ∅}.

Definition 3.5 (Sub-space). Let S be a set of states and B(S) be its
boundary states, such that B(S) < S , and any s ∈ S is adjacent to

some t ∈ B(S), then (S,G) form a sub-space, iff (i) S ∩G = ∅, and

(ii) G ⊆ B(S)
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The definition of sub-space above is similar to the one in [5]. The

states of the sub-space are obtained from the n-step closure of the

particular state under consideration, which is generally where a

change is detected in the environment. To define a sub-space MDP,

we need to define a set of goal states. Recall that the agent has

learned the source task. From this, we know the possible destination

states, which are also the destination states of the target task. For

instance, for an assistive care robot whose task is to deliver items

from specified locations like kitchen to the living room, under the

assumptions listed earlier, the landmarks (goal states) remain the

same across source and target tasks. The goal states for the sub-

space MDP are defined as below.

Lemma 3.6 (Local goal states). The frontier states form the goal
states.

Proof sketch: Consider the set of states S ′ = Cn (si ), which forms the

n-step closure of state si . The agent’s goal is to reach a state that

helps circumvent the current change in environment. Any state

outside the closure will suffice. Hence the frontier states act as the

goal states. □

Lemma 3.7 (Goal preference). Let, for eachG ∈ F the reward
for reaching G, r ′ = r + Φ(G) where Φ is any potential function and
r is the reward from the parent task. The reward function is then
R′ = {r ′}. R′ creates a preference order of goal states.

Proof sketch: By definition, the potential function creates a partial

ordering of values in the set R′. Since, the goal states are assigned
rewards as per R′, there is an ordering over the goal states G ∈ F .
An agent acting greedily will converge to the goal(s) that have the

highest reward. Hence a preference order is created over the goal

states. □
The states mentioned in Lemma 3.6 are based on the agent’s

experience in the source task. Lemma 3.6 allows us to construct goal

states easily. We use a potential function [30] to create a preference

order in the goal states. The potential function is based on a domain

dependent heuristic, for instance, it can be defined as theManhattan

distance from goal state in a grid world.

Theorem 3.8 (Sub-space extraction). There exists G ∈ F such
that (Cn (si ),G) form a sub-space.

Proof: From Definition 3.4, we have that the frontier states and the

closure are disjoint sets. Hence, any G ∈ F does not belong to the

closure Cn (si ). Now, from Definition 3.5, we have that (Cn (si ),G)
form a sub-space.

Further, using A′ ⊆ A as the action set, and R′ defined above,

for the sub-space, we have a sub-space MDP,M ′ = ⟨S ′,A′,T ′,R′⟩,
where T ′ is the transition function for this sub-space that must be

learned to solve the task. □
In Theorem 3.8 construction, there is one such reward function

R′ for every sub-space MDP extracted. The advantage of having a

reward that is relative in the agent’s operational environment is

that an absolute frame of reference is not required. In most cases, a

suitable reward function can be easily defined based on the current

domain of operation.

Sub-space exploration
Earlier we defined how a sub-spaceMDP is extracted in the target

task. Each sub-space MDP is a sub-task in its own right. In our work,

we use Rmax exploration to explore in the sub-space extracted.

However, one can use any appropriate exploration mechanism in

this sub-space MDP. Alternatively, we can also use a different RL

algorithm to solve the sub-task MDP.

The extracted sub-space MDP is visible only in the agent space

and the environment is oblivious of its presence. Hence the agent

has to maintain a mapping between states of the problem and the

states in the sub-space MDP. We use a simple look up table mech-

anism to provide mapping between states in the parent task and

those in the sub-space and vice-versa. For complex tasks any other

mapping function can be used to map between the parent task and

sub-space states. Similarly, all the actions in the parent problemmay

not be applicable in the sub-space. For instance, if the sub-space ex-

tracted is only used in navigating in an environment, other actions

like picking up objects or placing them are not relevant. Sub-space

exploration yields a policy that circumvents the detected change

in the environment. It follows that one such policy is obtained for

each sub-space that is extracted.

Policy composition
The result of sub-space exploration and solving the sub-space

MDP is a policy that circumvents the change in the environment.

To solve the target task, this policy must be used in conjunction

with the source task policy. Policy composition can be achieved

in various ways. A simple approach is to identify the location of

change, and invoke the learned policy in that state. Once the agent

is in the goal state local to the extracted sub-space, it can continue

to follow the source task policy. The limitation of this approach is

that it does not explore the rest of the target task other than the

extracted sub-space. Hence the resulting policy may be sub-optimal

in the target task. To enforce active exploration of the target task,

we use an ε-greedy like approach. With a small probability ε , the
agent constructs sub-space MDP even when there are no changes

detected in the environment. This sub-space MDP is solved in a

similar manner using sub-space exploration. If the extracted sub-

space is too small, there is a possibility that the sub-space policy

leads to a state that is still blocked, requiring multiple iterations of

extracting and solving the sub-space.

Regret calculation
Herewe show that the regret an agent accumulates using SEAPoT

is dependent only on the step size parameter of the n-step closure.

Definition 3.9 (Diameter). Assuming each action takes unit time,

the number of time steps taken to reach state s ′ from s under policy
π in an MDPM with S states and A actions is the Diameter of the

MDP [24].

D(M) = max min

s,s ′∈S , π :S→A
E
[
T (s ′ |M, π , s)

]
(1)

From [24], we know that D = log |A | |S | − 3. With respect to the

sub-spaceM ′, we have D = log |A′ | |S
′ | − 3.

The performance of a policy in a state, s , can be expressed as the

expected average reward µπ = lim

T→∞
1

T E
[∑T

t=1 r
t |s0 = s

]
, where

r t = r (st , π (st )) is the reward obtained in state st following the

policy π .

Definition 3.10 (Regret). Regret of the algorithm executing a pol-

icy, π , relative to executing the optimal policy, π∗, forT time steps is

3



∆(s) = T µ∗ −
∑T
t=1 r

t
(where µ∗ is the optimal average reward) [1].

Theorem 3.11 (Regret as a function of n). The regret accu-
mulated by the agent following the target task policy obtained using
SEAPoT depends only on the step size, n used to construct the sub-
space.

Proof. Consider the target task policy, π ′, obtained by com-

posing the source task policy and the local policy obtained using

selective exploration. The total reward obtained by the agent fol-

lowing π ′ from state s is: µ ′ = lim

T→∞
1

T E
[∑T

t=1 r
t |s0 = s

]
. µ ′ can be

expressed as a sum of three parts. Expected reward until change is

detected, expected reward following the sub-space policy and the

expected reward following the source policy thereafter.

µ ′ = lim

T→∞

1

T

E
[ b∑
t=1

r t

]
+ E

[ д∑
t=b

r t

]
+ E


T∑
t=д

r t

 (2)

From Definition 3.10, we obtain the following regret on using

selective exploration instead of acting optimally in the target task.

∆ = T µ∗ − µ ′. However, µ∗ and µ ′ differ only in the middle term

of (2). Therefore, we can say that the regret obtained by SEAPoT

is T ′µ∗ − E
[∑д

t=b r
t
]
. However, {b . . .д} are the states of the sub-

space S ′. Reaching from b to д in the sub-space is equivalent to

traversing the diameter of the sub-space MDP,M ′. ForM ′, we have
T ′ = D. Therefore the regret accrued by a sub-space MDP using

SEAPoT is

∆ = Dµ∗ −
D∑
t=1

r t (3)

But, we saw earlier that D =
(
log |A′ | |S

′ | − 3

)
and |S ′ | depends on

n of the n-step closure (by construction Theorem 3.8). Thus we see

that the regret is a function of n, the step size chosen to construct

the sub-space. □

4 SEAPOT ALGORITHM
The SEAPoT method is detailed in Algorithm 1. The agent starts by

executing the source task policy and performs state transitions until

a change is detected in the environment (lines 4–5). The function

f(s,a) indicates executing action a in state s ; the agent reaches some

state s ′ on executing f .
In the source task, as the agent learns the policy, it records two

things. First, a list of states reachable from every state; second, a set

of records of its history. We use the reachable states to construct a

n-step reachability closure, S ′ = Cn (si ), and the local goal states

G ′. One step reachable states from a state s are those which can be

reached on executing an action a, i.e. {sj | T (si ,a, sj ) > 0}.

We use the history recorded to perform change detection in the

environment as explained earlier (lines 19–22). When a change

in environment is detected, the agent first constructs a sub-space

MDP (lines 12–18). Next, the agent explores the target environment

until one of the local goal states (i.e, д′ ∈ G ′) is reached (lines

9–11). The intuition here is to quickly reach a state from where the

source policy can be followed. On reaching д′, the agent derives the
target task policy by composing from the source task policy and

the policy obtained from the sub-space MDP. The process repeats

until the agent reaches the goal in the target task or it encounters

another change in the environment. We notice two things from

the algorithm. (i) The exploration is limited to a small number of

steps (till reaching д′ ∈ G ′) (ii) The number of times exploration is

performed is minimal.

5 MEASURING TASK DIFFERENCE
To prevent or minimize negative transfer, i.e., transferring knowl-

edge across dissimilar tasks that leads to degradation in the learning

performance, we need to determine if the source and target tasks are

“similar”. It is difficult to determine task similarity a priori, unless

the transition functions, value functions and/or reward functions

for both tasks are available. Also, similarity metric is dependent on

the transfer mechanism considered and it is impossible to define

a single metric to measure task similarity for all transfer mecha-

nisms [8].

Prior efforts in determining task similarity require pre-defined

task models. Two common metrics are used to determine the task

similarity, viz., the Kantorovich distance metric [18, 32] and Bisim-

ulation metric [19]. Bisimulation metric is an exact metric. Unless

the states transitions and rewards are equivalent, the metric re-

ports dissimilarity in the tasks. On the other hand, the worst case

computational complexity to determine the Kantorovich distance is

O
(
|A| |S1 |

2 |S2 |
2 |S1 + S2 | log(S1 + S2)⌈

lnη
ln c ⌉

)
. Ignoring the log terms,

this is quartic in the size of the state space (if |S1 | ≈ |S2 |).
We define a new, light weight, metric based on the Jensen-

Shannon distance [14] (JSD) to compute task similarity in the prob-

lems that share the same state-actions. Jensen-Shannon distance is

defined as the square root of the Jenson-Shannon divergence, D J S .

JSD is computed as shown in Equation (4).

D J S (p,q) =
1

2

DKL(p,m) +
1

2

DKL(q,m)

JSD =
√
D J S (4)

where, m =
p+q
2

, DKL is the Kullback-Leibler divergence, and

p and q are any two probability distributions. The computation

complexity of JSD is linear in the number of elements in the two

distributions [23].

The task difference (∆S ,T ) is calculated as follows. Since we are

dealing with the shared state-action space, we calculate the bin-

bin distance, JSD, among the corresponding state-action transition

distributions of the two tasks. Hence, in (4),p andq are the transition
distributions of the corresponding state-action pairs in the source

and target tasks. The JSD calculated between each corresponding

state-action pair is passed through a step function (I) to determine

its contribution to the task difference. The task difference is then

the summation of I over all the state-action pairs as shown in (5).

∆S ,T =
∑
(s ,a)

I(JSD) (5)

where, I(·) is a step function. For example, we can say, all state-

action pairs that have JSD > 0.5 contribute to the task difference.

Hence,

I(x) =

{
1 if x > 0.5

0 otherwise.

4



1 Algo SEAPoT :

2 while Target task NOT solved:
3 With probability ϵ explore target;

4 while NOT ChangeDetect():
5 s ′ ← f(s, πS (s))
6 Extract sub-space MDP();

7 Explore sub-space MDP( );

8 Compose policy πT

9 Proc Explore sub-space MDP:

10 Input: subSpaceMDP
11 Explore using R-max until д′ ∈ G′ reached ;

12 Proc Extract sub-space MDP:

13 // identify n-step closure

14 S ′ ← Cn (s) // According to Defn 3.3

15 // identify the local goal

16 G ′ ← F(S ′) // According to Lem 3.6

17 Define R′ // According to Lem 3.7

18 ConstructM ′ // According to Thm 3.8

19 Proc ChangeDetect:

20 Input: Time series data D
21 if Change detected:
22 Return True

Algorithm 1: SEAPoT Algorithm

Like in previous work, we run a few episodes of the target task

to obtain an initial estimate of the transition probabilities and use

this to determine the task similarity. In the experiments section

we report the improvement in learning (in terms of accumulated

rewards) for each similarity measure obtained.

Intuitively, the task difference metric ∆S ,T identifies the number

of locations where the environment has changed from the source

task to the target, where the source knowledge is no longer appli-

cable in the target.

6 RELATEDWORK
Many existing policy reusemethods, based onmodel-free Q-learning

can be categorized into two main categories: (i) developing an inter-

task mapping between source and target tasks, and (ii) developing

a policy library which can be reused in a new target task.

Developing an inter-task mapping is a common approach to

policy transfer between the source and target tasks [17, 33, 36]. The

mapping can be obtained in different ways. For example, (a) map-

ping from the semantics of the features and actions is used to de-

rive the target policy given the domain description and the source

policy [17]; (b) neural networks, with input nodes describing the

current state and the output node denoting the action selected,

trained on the source tasks are used with appropriate state variable

mapping to derive the policy in the target task [36]; and (c) map-

ping between the state-action pairs of the source and target tasks

is used to transfer the source policy as option (or macro-action)

in the target task [33]. Given the similarity assumption between

the source and target tasks, we assume the action mapping to be

one-to-one from source to target; there is no state mapping. Our

approach, however, allows and admits different transition functions

in the source and target tasks.

Policy library methods treat the problem of policy transfer like

a multi-armed bandit problem. The solution mechanism involves

identifying the best policy to reuse from a set of learned policies

without performing any shaping or inter-task mapping [9, 16]. Our

work is similar to these methods, but differ in following ways. First,

the existing methods work with the constraint that the domain

(defined as a tuple consisting of the states, actions and transition

functions) remains the same and each task is differentiated by the

reward functions. In our work, the transition functions involved in

the tasks are different; the reward functions may or may not be the

same across source and target tasks. Second, the existing methods

adopt probabilistic policy reuse mechanisms. When the state-action

spaces are similar in the source and target tasks, definitive policy

reuse and selective exploration perform better than probabilistic

policy reuse. Our approach can be extended with a probabilistic

reuse mechanism in future.

In RL, the STAR-max [29] algorithm uses domain knowledge to

reduce the sample complexity of R-max by preventing exploration

in irrelevant states. The algorithm, however, requires the explo-

ration envelope (a set of states to target exploration) and a recovery

rule (a policy to return the agent to the exploration envelope) to

be provided. In transfer learning, it is impossible to provide such

subsets of the state space for each task. We use the state reachabil-

ity information from the source task to selectively explore around

“obstacles” and quickly reach a state from which the original source

policy can be followed.

Model minimization techniques have been used to solve MDP

by aggregating states or abstracting states in a large MDP [11, 20,

25]. In RL, hierarchical decomposition has been used in online

planning [2]. However, these techniques do not extract a sub-space

in the given problem. Barry et.al., [4] propose inducing a hierarchy

in large state space MDP. Our method of extracting sub-space builds

on the notion of adjacency and reachability defined in a similar

manner.

Transferring knowledge from the source to target task can be

effected by other means like value function or trajectory transfer.

Information transferred by policy reuse is much lesser as compared

to other transfer methods. For instance, given the value function

or state-action-reward trajectories one can extract the policy but

it is generally not true the other way round. In different settings,

different mechanisms can be more effective than others. In general,

policy transfer mechanisms are space efficient owing to the design.

The transfer agent has to maintain only the source task policies,

instead of maintaining information about the transition model of

the entire state space or the history of state-action trajectories. To

the best of our knowledge no previous work, using any transfer

mechanism, has attempted a selective exploration approach as we

propose.
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7 EXPERIMENTS
In our experiments, wemimic the real-world setting for a household

robot that operates in a set of co-designed/co-developed homes,

(possibly catering to a specific need such as housing patients with

with limited mobility). This set up is common, for example, in the

public housing estates in Singapore. While the layout of the houses

is fixed, the environments differ in the placement of furniture and

other artifacts in the home. We evaluate the performance and effi-

cacy of SEAPoT in two sets of problems—navigation in a stochastic

shortest path setting and a pick-and-place task. We compare the

performance of SEAPoT with three state-of-the-art policy transfer

methods, Bayesian policy reuse [31], probabilistic policy reuse [16],

and policy reuse with reward shaping [7].

One of the most basic tasks for any assistive robot is navigation

within the environment. We model the environment as a discrete

two dimensional space. We explore two scenarios in our experi-

ments. The first is a simple navigate to target setting, where the

robot starts anywhere in the environment and reaches a target

location. This is similar to a robot reaching the kitchen when sum-

moned by the user. In the second scenario, the robot is tasked to

pick up an object from one of the pre-determined locations and

place it in a different location. This scenario encompasses many

household tasks. Some examples include fetching medicine from

the bedroom to living room where the user is sitting, clearing used-

cutlery from the dining table and moving them to the dish washer,

etc. This setting is similar to the benchmark taxi problem described

by [12].

We used environments with varying sizes to demonstrate the

scalability of our approach
1
. Our evaluations were performed on

three environments: taxi like environment [12] that has 2000 states;

a simulated household robot (similar to [13]) with 8000 states

and Microsoft Malmo platform [26] based on the popular game

Minecraft, with about 63000 states.

The taxi problem comprises a grid with numerous landmarks.

The state is represented as the vector ⟨x,y, θ,p,d, δ⟩. Where (x,y, θ )
represent the agent’s location and orientation; p and d represent

the passenger location and destination respectively. δ is the reading

from the distance sensor of the agent in each location in the grid.

The state-space size of this environment (calculated as |x |×|y |×|θ |×
|p | × |d |; δ is omitted as it is not used in the planning) can be varied

using different values of x (rows), y (columns) and the number

of landmarks in the grid. A state in the Minecraft environment is

represented similarly, with the addition of a vector of binary values

to indicate the resources the agent is currently holding and the

agents view point. In each of the test beds the agent can perform a

total of five actions: move forward, turn left, turn right, pick

up object and put down object.

In all the experiments we use R-max as the underlying explo-

ration mechanism and the standard value iteration to solve the

MDP. We set the exploration threshold of R-max to one, to pre-

vent unnecessary exploration. There is a penalty of -1 for each

step taken, and reward of +20 for successful completion of the task.

1
Our experiments are comparable in size and complexity to those reported in other

state of the art work. For example, the complex Mario domain [27] used in reward

shaping transfer work has 7072 discrete states [7].

Figure 2: Learning improvement
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Figure 3: SEAPoT versus no transfer

For pick-and-place tasks, an invalid pick up or put down attracts a

penalty of -10.

The actions have a probabilistic effect and the agent transits to

the intended state 80% of the time. It has a 20% chance of turning

either left or right. Each experiment run consisted of 100 episodes

and was repeated twenty times and the rewards were averaged over

these runs. Since the outcomes are similar for the pick-and-place

tasks across the environments, we only report the results of the

experiments on the simulated home environment. Learning time

for the source task is considered as sunk cost [35].

Performance of SEAPoT
We define learning improvement as the ratio of the accumulated

rewards obtained without transfer and accumulated rewards using

SEAPoT. The learning improvement calculated in all the environ-

ments is shown in Figure 2. Due to the way in which we extract the

sub-space and limit the learning in the target task, the improvement

in the accumulated rewards is apparent in problems with larger

state space than in the smaller ones, proving that SEAPoT performs

better in problems with larger state spaces. The improvement in

jump start is shown in Figure 3. Notice the improvement in the

initial rewards obtained by using SEAPoT as compared to learning

the target task without transfer. In both cases, the learning time

of the source task is not considered in reporting, like any other

previous transfer learning works.

A flexible policy transfer method
In the next experiment we intend to demonstrate two-fold ad-

vantage of our work. First, the policy transfer method is designed

to be flexible—we can use any exploration strategy or learning

algorithm. To demonstrate this, we incorporate two different ex-

ploration mechanisms. Second, in the simplest terms, our approach

involves identifying the change and circumventing the same. One
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Figure 4: Comparison of different exploration strategies
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Figure 5: Comparison between SEAPoT, PPR, RS and BPR

can argue that any simplistic exploration strategy should suffice. To

show the advantage of SEAPoT over simple exploration strategies,

we compare our work with two baseline exploration mechanisms

(i) random exploration (ii) ϵ-greedy like exploration. In all cases,

we use the same source policy as the transferred knowledge. The

first approach is a naive one; when the agent detects a change in

the environment, it takes a set of random actions hoping to reach a

state that is known. In the second case, the agent takes a random

action with a small probability ϵ (set to 10% in this case), when

a change is detected. Otherwise, it follows the source task policy.

In contrast, SEAPoT extracts the sub-space and performs minimal

exploration in the extracted sub-space, learning the dynamics of

the new environment. The average rewards obtained for each ex-

ploration strategy is shown in Figure 4. The baseline methods fail

to converge to the optimal policy, whereas SEAPoT performs better.

SEAPoT for Policy Transfer
Next, we compare our work with three state-of-the-art policy

reuse methods [7, 16, 31] and the classical Dyna-Q [34], and analyze

the impact of policy reuse with selective exploration in the target

environments. Since the experimental environments are different

in each of the earlier works, we evaluated all the algorithms using

the experimental setup described earlier.

We compare the methods based on the average reward obtained.

Dyna-Q does not converge to the optimal policy even after hun-

dred episodes owing to the large state-space size of the problem(s).

Hence, we do not include it in the comparison presented in Figure 5.

Notice the improvement in the average rewards of SEAPoT over

both probabilistic policy reuse and policy transfer using reward

shaping. We attribute the performance improvement to the follow-

ing reasons: (i) The agent reuses its behavioral knowledge learned

in the source to the maximum extent in the target task; (ii) there is

minimal exploration in the target environment. Probabilistic policy

reuse (PPR), irrespective of the current situation (possibly of being

stuck behind an obstacle), applies the same action as the source

policy, if the outcome of the decision is to use the source policy.

Hence the agent draws negative rewards. Bayesian policy reuse

(BPR) mechanism works well when the set of tasks are known be-

forehand. When a new task is presented, it selects a policy from

the library and reuses it.

Since the task presented to BPR is not among the ones that are

learned earlier, it doesn’t converge in our experiments. The reward

shaping (RS) agent, on the other hand, has to learn the target task,

albeit with help from the shaping signal that is obtained from the

source task policy. Hence, even though it converges to a better

policy (notice that SEAPoT converges to a similar policy) the jump

start is lost.

Effect of Task Difference on Performance
Earlier we described a new metric to determine the difference

between the source and target tasks. We hypothesize that the per-

formance of SEAPoT degrades when the source and the target tasks

are drastically different. In this experiment we use a simple nav-

igation task in the small MAXQ taxi-like environment to verify

the hypothesis. Without loss of generality, let us call the tasks as

T1,T2,T3 and T4. We use T1 as the source task and the others as

the target. We plot the differences between each pair of tasks in

Figure 6. The spikes indicate the state-action combinations where

the two tasks differ
2
; hence, lesser number of spikes mean the tasks

are closer to each other. From Figure 6, we can see that T 4 is closer
to T 1 than T 2 and we expect transferred knowledge to have a pos-

itive impact on learning T4. To show the performance difference

of SEAPoT at different degrees of similarity, we plot the average

rewards of two tasks, T 3 and T 4 in Figure 7. As one can expect the

performance degradation is more pronounced in the case ofT 2 and
we don’t show it to maintain the aesthetics of the plot. Next, we

plot the accumulated rewards for each of the target tasks at the

end of the learning in Figure 8. As hypothesized, T2 suffers from
negative transfer whereas T 4 does better with transfer.

One can use these observations as a ballpark estimate to set the

threshold and to determine when the framework should discard the

source policy and learn the target task afresh. We leave determining

the theoretical threshold value to future work.

8 DISCUSSION AND CONCLUSION
We presented a new sub-space extraction mechanism that aids se-

lective exploration for policy transfer in RL. The proposed SEAPoT

algorithm explores in the resulting sub-space, thereby reducing

exploration required in the target task. Though our assumption on

similar source and target tasks sounds restrictive, it covers many

real world use cases. We showed that our algorithm works well

in problems with large state spaces; the framework is flexible and

allows incorporation of different exploration mechanisms and learn-

ing algorithms. Our work is a first attempt towards reuse of source

task policy by exploiting online, local information in the target

tasks to adapt to the new setting.

2
Though we use factored notation in our work, for ease of understanding, the x-axis

in the graph is the enumerated state-action space
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(a) ∆T 1,T 2 = 44 (b) ∆T 1,T 3 = 36 (c) ∆T 1,T 4 = 22

Figure 6: Difference between source and target tasks (each ∆ indicates the number of locations where the target task differs
from the source task T1)
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Figure 7: Performance of SEAPoT for two target tasks,T 3 andT 4 Figure 8: Performance of SEAPoT at different ∆’s

Selective exploration may sometimes lead to costly additional

exploration steps. We can alleviate this problem by adaptively in-

creasing the size, n, of the n-step closure. In this work, the value of

n was determined empirically. We will provide a theoretical eval-

uation to determine the optimal value of n in a subsequent paper.

Active exploration of the target task is still minimal in the pro-

posed setup and will be addressed in future work. Using simulation

for look-ahead to identify tasks structure and partial policy reuse

in the target task can help relax the similar tasks assumption. In

model-based methods, the learned environment models can be used

to encode valuable information that can be transferred to the tar-

get task. We intend to extend our work to exploit the information

contained in the learned models to generate better sub-spaces and

reducing the sample complexity of the target task learning. Finally,

another planned extension is to use the task similarity information

to make the key decision—to transfer source knowledge or learn

the task afresh. This decision depends on the level of performance

loss acceptable due to the transfer, which in turn is specific to the

domain of interest.
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