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ABSTRACT
Multi-agent simulation can reproduce real behavior of a multi-
agent system in which people can interact with each other. To re-
produce a diverse behavior, it is necessary to design specific ac-
tion rules for each agent from a plethora of rules. For this prob-
lem, imitation learning is used to automatically design rules from
action logs of agent’s behavior. However, the simulation designer
should be able to interpret the purpose of rules designed for each
agent to explain the validity of the simulation conducted. There-
fore, we propose a novel entropy-based multi-agent inverse rein-
forcement learning. Multi-agent inverse reinforcement learning is
a framework for estimating reward representing the agent’s pur-
pose. In this paper, we extend maximum discounted causal en-
tropy inverse reinforcement learning to a Markov game environ-
ment. We propose the approach of decomposing the overall prob-
lem into a tractable problem for each agent. Compared with pre-
vious methods, the proposed method can be applied to Markov
game of general-sum and infinite-horizon problems. Experimental
results showed that the proposed method can estimate valid re-
wards in both deterministic and probabilistic transition environ-
ments.
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1 INTRODUCTION
Environment containing people that are interested in interacting
with each other, e.g., a crowd of people [18], and traffic flow [3] is
referred to as a multi-agent system. Studies have been conducted
to predict an agent’s behavior or understand the purpose of each
agent in a multi-agent system.

Multi-agent simulation is a method to reproduce a multi-agent
system. In the multi-agent simulation people are treated as agents,
an agent’s decision-making is represented as behavior rules, i.e.,
function to determine the agent’s action from agent’s observation.
Interpreting the decision-making process and purpose of an agent
is easy because of multi-agent simulation’s abovementioned char-
acteristics. However, multi-agent simulation is a bottom-up ap-
proach for reproducing behavior of an agent from behavior rules.
There is a possibility of individual differences occurring in an agent’s
action rules, and the combination of rules is enormous. Hence, de-
signing of action rules requires a trial and error approach.

Therefore, we propose a framework that can automatically es-
timate heterogeneous action rules from the action log [9]. Action
log represents trajectories that are a sequence of coordinates and
actions, and can be obtained by observing the behavior of an agent

using sensors. However, even if it is possible to reproduce the be-
havior, it is necessary to analyze the estimated action rules to un-
derstand the agent’s purpose in the system.

Thus, we use multi-agent inverse reinforcement learning for es-
timating the agent’s purpose. Multi-agent inverse reinforcement
learning is a framework that can estimate an agent’s reward in
Markov game [8], which is an extension of the Markov decision
process for single-agent environment. Because reward represents
the value of a state-action pair, the agent’s purpose could be inter-
preted as a state-action pair with high estimated reward value, i.e.,
multi-agent inverse reinforcement learning can directly estimate
the agent’s purpose as a reward.

Here, we propose a novel multi-agent inverse reinforcement
learning that is based on entropy maximization principle. Particu-
larly, we extend the maximum discounted causal entropy inverse
reinforcement learning to an infinite-horizon problem in Markov
game, and decompose this problem to a tractable problem for each
agent. In the experiments performed, we showed that proposed
method can estimate valid reward from action log generated using
deterministic policy of Nash equilibrium in simple grid world.

2 PROBLEM DEFINITION
Markov game represents < N ,S, {An }n∈N ,T , {Rn }n∈N > where
N is a set of agents (|N | ≥ 2),S is a finite set of states,An is a finite
set of actions of agent n,T : S × A1 × · · · × A |N | × S → [0, 1]
is state transition probability, and Rn : S × A → R is reward of
agent n. The action of agent n is an ∈ An , i.e., the joint action of
all agents is a ∈ A. We assume that all agents are able to access
the state s ∈ S.

We estimate the reward of all agents {Rn }n∈N from action log,
which is a variable length of the trajectory setD = {{st ,at }tdt=0}

D
d=1,

in a Markov game that does not include a reward. Herein, experts
mean the agents generating action log and expert’s trajectories
means D. Furthermore, the estimator does not know T and ex-
pert’s policy (πE ), but can access the simulation of the environ-
ment.

3 RELATEDWORK
3.1 Inverse reinforcement learning
Imitation learning is a framework for reproducing the expert’s be-
havior from expert’s trajectories. Imitation learning is mainly di-
vided into two approaches [12]. First, behavioral cloning in which
the expert’s behavior is directly mimicked. Implementation of be-
havioral cloning is easy. However, if the number of the expert’s
trajectories is insufficient, imitating actions in states that are not
included in the trajectory is dubious. Second, inverse reinforce-
ment learning (IRL) in which reward is estimated to imitate the



expert’s behavior. However, there are challenges such as ill-posed
problem and high computation cost for inner-loop, which is inter-
nal calculations for policy of estimated reward using reinforcement
learning [17].

IRL can be divided into reward learning for estimating the ex-
pert’s reward and policy learning for estimating the expert’s pol-
icy [12]. Reward learning is further divided into max-margin and
max-entropy approaches. The former’s objective is to maximize
the margin between expert’s policy and other policies [1, 11], and
the latter’s objective is tomaximize the entropy constrain inmatch-
ing expertwith corresponding estimated behavior [19–21]. For pol-
icy learning, there is a generative adversarial approach based on
the maximum-entropy approach [4].

3.2 Multi-agent inverse reinforcement learning
Table 1 shows the classification of multi-agent inverse reinforce-
ment learning (MAIRL). MAIRL can be classified with respect to
the structure of reward and the objective of approach that is men-
tioned in Section 3.1.

Table 1: Classification of multi-agent inverse reinforcement
learning

Reward Objective
structure Max-margin Max-entropy others

homogeneous Šošić et al. [15]

zero-sum Lin et al. [7]
Wang et al. [16]

others
Natarajan et al.[10] Ziebart et al. [20] Le et al.[6]
Reddy et al. [13] Bogert et al. [2]

Song et al. [14]

Šošić et al. [15] proposed a method for estimating homogeneous
reward in swarm system, whereas Lin et al. [7] andWang et al. [16]
proposed MAIRL for a zero-sum game. However, these method
[7, 15, 16] cannot be applied to a general-sum Markov game be-
cause it assumes a specific reward. MAIRL based onmax-margin in
general-sumMarkov game [10, 13] is an extension of [11]. Natara-
jan et al. [10] is assumed that there is a common centralized policy
for all agent. Reddy et al. [13] is assumed that there are decen-
tralized policy for each agent. However, the former method [10]
requires a transition probability while the latter method [13] re-
quires Nash Q-learning for determining the Nash equilibrium in
the inner-loop. MAIRL of Ziebart et al. [20] and Bogert et al. [2]
based on maximum entropy. Ziebart et al. [20] formulated a max-
imum causal entropy IRL method and demonstrated the effective-
ness of the proposed method in pursuit-evasion of three agents.
Bogert et al. [2] proposed MAIRL for occlusion environment in
which a part of the expert’s trajectory is hidden. However, while
the former method [20] is limited to the finite-horizon environ-
ment, the latter [2] requires a reward matrix for any state in which
the agent interacts. Additionally, Le et al. [6] and Song et al. [14]
presented a policy learning method to not explicitly estimate ex-
pert’s reward.

Here, we assume reward function is represented by a linear sum
of feature f vector and weight θ , to propose a novel MAIRL based

on maximum discounted causal entropy. Unlike the method pro-
posed in [2, 20], the proposed method does not require a reward
matrix and can be applied to the infinite-horizon environment, and
does not include the non-stationary problem in Markov game.

4 MULTI-AGENT MAXIMUM DISCOUNTED
CAUSAL ENTROPY IRL

4.1 Formulation of the problem
In this section, we present amulti-agentmaximumdiscounted causal
entropy (M-MDCE) IRL problem and propose a novel MAIRL algo-
rithm for solving a decomposed problem for each agent. M-MDCE
IRL problem is an extension of maximum discounted causal en-
tropy IRL [19] to Markov game. The M-MDCE IRL problem is rep-
resented as follows:

max
π t ,t ≥0

∑
n∈N

Hπt,n,π E
−n
(πt,n ) (1)

s.t. f n,π E = f n,πt,n,π E
−n

∀n ∈ N , t ≥ 0 (2)

πt,n (an |s) ≥ 0 ∀an ∈ An , s ∈ S,n ∈ N , t ≥ 0 (3)∑
an ∈An

πt,n (an |s) = 1 ∀s ∈ S,n ∈ N , t ≥ 0 (4)

πt,n (an |s) = πt ′,n (an |s) ∀s ∈ S,an ∈ An ,n ∈ N , t , t ′ ≥ 0 (5)

where Eq. (1) denotes the maximization of the sum of causal en-
tropy for each agent, defined in Eq. (6). Eq. (2) represents con-
straints of the expected feature vector matching defined in Eq. (7).
Eq. (3), Eq. (4), and Eq. (5) represent constraints of the stationary
policy. fn : S × A → Rk is the feature vector of agent n; and f n
is the expected feature vector.

Hπt,n,π E
−n
(πt,n ) = E

[ ∞∑
t=0
−γ t logπt,n

(
At,n |St

) ]
(6)

f n,πn,π−n =
∞∑
t=0

γ tE [fn (St ,At )] (7)

π (At |St ) =
∏
n∈N

πn
(
At,n |St

)
(8)

4.2 Decomposing the problem into a tractable
problem for each agent

Herein, we consider two approaches for solving theM-MDCEprob-
lem. The first approach involves implementing a multi-agent rein-
forcement learning for the inner-loop procedure, a way for solving
the M-MDCE problem in Markov game directly. However, multi-
agent reinforcement learning requires dealing with non-stationary
environment, thereby increasing the possibility that the learning
does not converge.

The second approach involves decomposing theM-MDCE prob-
lem with respect to each agent, as a way of solving each agent’s
MDCE problem in a Markov decision process. The MDCE problem
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for agent n is represented as follows:

max
πt,n,t ≥0

Hπt,n,π E
−n
(πt,n ) + θn (f n,π E − f n,πn,π E

−n
)

s.t. πt,n (an |s) ≥ 0 ∀an ∈ An , s ∈ S, t ≥ 0∑
an ∈An

πt,n (an |s) = 1 ∀s ∈ S, t ≥ 0

πt,n (an |s) = πt ′,n (an |s) ∀s ∈ S,an ∈ An , t , t
′ ≥ 0

This problem is a decomposition of the Lagrangian relaxation of
the originalM-MDCEproblem. Because the behavior of other agents
is fixed by the expert policy, the state transition of each decom-
posed problem is stationary. However, the expert policy cannot be
obtained simply from the assumption of Section 2.

Hence, we propose a multi-agent maximum discounted causal
entropy IRL, which can be used to decompose the M-MDCE prob-
lem into each agent’s MDCE problem and replaces the expert pol-
icy πE−n with alternative policy π̃−n . Algorithm 1 describes the
M-MDCE IRL approach. First, in each iteration we select a set of
agents Ñ to update the reward’s weight and the alternative policy.
Next, the reward’s weight θn is updated using MDCE IRL. Termi-
nation of reward’s update is done when the difference between
the expert’s expected feature vector and the estimated one is very
small, or the number of updates has reached the maximum value.
Finally, we obtain the policy from the estimated reward’s weight
using Soft Q-Learning [19], and an alternative policy is calculated
from the obtained policy using complement procedure. Comple-
ment procedure is to close the gap between expert’s policy πE−n dis-
tribution and alternative policy π̃−n distribution. Details of com-
plement procedure are described in subsection 4.2.2.

Algorithm 1 Multi-agent MDCE IRL

Require: Markov Game\{Rn }n∈N
Require: Expert trajectories D
Ensure: Reward weight {θn }n∈N

Initialize alternative policies {π̃n }n∈N and {θn }n∈N
1: for iteration = 1, 2 . . . do
2: Ñ ← Selector(N)
3: θn ← MDCE(Dn , π̃−n ) ∀n ∈ Ñ
4: πn ← SoftQ(θn , π̃−n ) ∀n ∈ Ñ
5: π̃n ← Complement(πn ,D) ∀n ∈ Ñ

In the following subsection, we present a procedure selecting a
set of agents and calculating the alternative policy.

4.2.1 Slecting set of agents. Herein, we discuss two kinds of se-
lection methods referred to as cyclic and parallel. Figure 1 presents
the flow of the procedure in case the number of agents is two. The
cyclic procedure selects one agent with respect to its order in the
iteration. The parallel procedure updates all agents in parallel dur-
ing the iteration and regularly exchange the alternative policy be-
tween agents.

(a) Cyclic (b) Parallel

Figure 1: Procedure of the proposed method (the number of
agents is two (|N | = 2). i − 1, i, i + 1 is index of iteration)

4.2.2 Calculating alternative policy. In MDCE IRL, policy for
reward is known to satisfy the following Soft Bellman equation:

Qsoft
θ (s,a) = θ

⊤ f (s,a) + γ
∑
s ′∈S

T (s ′ |s,a)V soft
θ (s ′) (9)

V soft
θ (s) = softmaxa∈AQsoft

θ (s,a) (10)

π (a |s) = exp
(
Qsoft
θ (s,a) −V soft

θ (s)
)

(11)

where softmaxa∈AQsoft
θ (s,a) represents log

∑
a∈A exp

(
Qsoft
θ (s,a)

)
.

Thus, an alternative policy can be learned using Soft Q-Learning,
presented in Algorithm 2. Next, we apply a complement to the al-
ternative policy, presented in Algorithm 3. Complement procedure
modifies the alternative policy so that the probability of state and
action that is included in expert trajectory is one. This procedure is
intended to approximate the probability distribution of the expert
policy.

Algorithm 2 Soft Q-Learning for agent n

Require: Reward weight θn , Explore policy π , Alternative policy
of other agent’s π̃−n

1: for t = 0, 1, 2, · · · do
2: Generate sample (st ,at , st+1) from π , π̃−n
3: Qsoft

n
(
st ,at,n

)
← Qsoft

n
(
st ,at,n

)
+ ηt

(
st ,at,n

)
·

4:
[
θ⊤n fn (st ,at ) + γV soft

n (st+1) −Qsoft
n

(
st ,at,n

) ]

Algorithm 3 Complement for agent n
Require: Policy πn , Expert trajectories D
Ensure: Alternative policy π̃n
1: π̃n ← πn
2: for trajectory ∈ D do
3: for s,a ∈ trajectory do

4: π̃n (a′ |s) ←
{
1 (a′ = a)
0 (otherwise)
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5 EXPERIMENTS
5.1 Experiments setting

(a) Deterministic transition envi-
ronment (GW1)

(b) Probabilistic transition envi-
ronment (GW2)

Figure 2: Environments and expert’s trajectories (S1 and S2
are the start coordinates for agent 1 and 2, respectively. G1
andG2 are goal coordinates while the bold line in GW2 rep-
resents barriers)

Figure 2 shows two experimental environments. Each environ-
ment is a 3 × 3 grid world, and the objective is that the two agents
move from the start (S1, S2) to goalG along the shortest path. The
set of states is a combination of the agent’s coordinates while the
set of actions of each agent is A1 = A2 = {up, down, right, left}.
An agent can move to adjacent cells in any of the four directions
with one step. If an agent moves on the wall or to the same cell
as another agent, except when either agent moves toward the goal
coordinate, the agent remains in the same coordinate where it was
before the transition. In GW2 environment, there are barriers that
can interfere with the transition from the start coordinate (S1, S2)
to the coordinates adjacent to the north with 1/2 probability. The
states from which either agent reaches the goal is regarded as the
absorbing state.

The expert trajectory of each environment represents a Nash
equilibrium. Arrows in Figure 2 represent the expert trajectory.
The experts take deterministic action in a coordinate along the ar-
row. This expert’s trajectory is Nash equilibrium, the agent obtains
+100 reward on reaching the goal, and -1 reward on moving in the
same cell [5].

A feature vector is a binary vector for all state-action pairs. The
expected feature vector can be calculated using Eq. (7) from 100
sampling trajectories, the maximum length of each trajectory is
50 steps. The initial reward’s weight and policy is 0 vector and
uniform distribution, respectively. The maximum number of up-
dating with MDCE IRL and episodes of Soft Q-Learning is 100, re-
spectively. The step size of MDCE IRL is fixed at 0.1. To evaluate
the effect of L2 regularization at updating the reward’s weight, we
experiment with the two kinds of the weight of L2 regularization
term, i.e., 0 and 0.01.

5.2 Experiments result and discussion
In the experiment, the estimation error of 10 trials is used to evalu-
ate the differences of the expert’s behavior and estimation results.
The estimation error is the norm of differences between the ex-
pert’s behavior and the estimated expected feature vector. If the

estimated policy matches the expert’s policy, then the estimation
error is zero.

Figure 3: Cyclic procedure on GW1

Figure 4: Parallel procedure on GW1

Figure 3 and 4 show changes in the average and standard devi-
ation value of the estimation error in GW1 using cyclic and par-
allel procedures, respectively. The horizontal axis represents the
iteration, whereas the vertical axis represents the estimation error.
The label including L2 in Figure 3 and 4 is the result of using L2
regularization. From these results on the environment with a de-
terministic transition, the proposed method can estimate rewards
that match the expert’s behavior policy. Further, the complement
procedure reduces the number of iteration until convergence and
parallel procedure converge quickly than the cyclic procedure.

The reason that complement procedure is most effective is prob-
ably because imitating the expert behavior is easy. For example,
consider the case of estimating reward of agent 1 in GW1. If the
alternative policy of agent 2 is uniform distribution and agent 1 se-
lects action of moving right in initial state, the probability of tran-
sition to the same state as expert is 1/4. In this case, the expected
feature vector does not match the expert’s vector for any policy of
agent 1. However, if the alternative policy is calculated using com-
plement procedure, the agents do not conflict. Therefore, it indi-
cates that the complement procedure facilitates the estimation of
reward. The parallel procedure is effective because the number of
updating reward is two times the updating reward obtained using
the cyclic procedure.
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Figure 5: Cyclic procedure on GW2

Figure 5 shows the result obtained when the environment was
performed in an environment that includes the probabilistic tran-
sition of GW2 using cyclic procedure. In this environment, even
if complement is used, the estimation error with accurately zero
reward was not estimated. It produced the same results as cyclic
procedure irrespective of whether a parallel procedure is used or
not. However, the estimated rewards at least reflect the expert’s
purpose. Figure 6 shows five state-action pairs with the highest
estimated reward value. Because four state-action pairs of the pro-
posed method are included in the expert’s trajectory, it can be said
that the proposed method can be used to estimate valid rewards.
Therefore, the estimation error is not zero because sampling dis-
tribution is influenced by a probabilistic transition.

Figure 6: State-action pairs of the largest value of the esti-
mated reward (GW2+Cyclic)

6 CONCLUSION AND FEATUREWORK
We proposed a new MAIRL approach that can be used to design
an agent’s action rules and to understand the purpose of the agent
in the multi-agent simulation. Particularly, we formulated MAIRL
problem based on maximum discounted causal entropy in infinite-
horizon problem of Markov game. Further, we proposed M-MDCE
IRL that can decompose the overall problem into tractable prob-
lems in an environment of a single agent. The experiments con-
ducted on simple 3× 3 grid world environment show that the pro-
posed method can estimate rewards from deterministic expert’s
trajectory.

There are three future challenges to this research. The first is
to apply the proposed method to different environments such as
a zero-sum game. The second is to apply it to an application in a
continuous state space, to validate the proposedmethod scalability.
The third challenge is to identify the equilibrium point that can be
acquired using the proposed method.
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