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ABSTRACT
Directly approximating the expected value of actions is the most tra-
ditional approach to learn in Reinforcement Learning (RL) problems.
However, learning the distribution of possible returns for each ac-
tion (Distributional RL) has been shown to improve learning when
allied to function approximation. Although efficient Distributional
RL algorithms have been proposed in recent years, its use in multia-
gent tasks has not been investigated so far. Moreover, Distributional
RL has a yet unexplored potential to transfer learning, which makes
it a promising topic for research. In this work-in-progress paper,
we describe our efforts and results applying Distributional RL in
Half Field Offense, a popular and challenging testbed for Multiagent
RL. We also describe our long-term plans on how to combine Dis-
tributional RL with Multiagent Transfer Learning. To the best of
our knowledge, this is the first reported use of Distributional RL in
multiagent tasks. Our next step is to build upon this first effort to
achieve our long-term objectives.
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1 INTRODUCTION
Very commonly, Reinforcement Learning (RL) agents aim at esti-
mating an expected quality value for each state-action tuple during
learning (known as Q function) [11]. However, learning a distribu-
tion of possible returns instead of directly computing theQ function
might present advantages. Besides enabling risk-sensitive reasoning
[6], learning an approximate distribution preserves multimodal-
ity and was shown to result in more effective learning than the
standard approach in Atari games [2]. Inspired by the impressive
results achieved by Distributional RL when combined with Deep RL
techniques [5], we here apply Distributional RL to Half Field Offense
(HFO) [3], a challenging domain that has been used as a multiagent
learning testbed. We show that (i) Distributional RL is able to learn
a consistent distribution of possible returns in the HFO domain; (ii)
Reasoning over the distribution of returns enables learning policies
comparable to the hand-tuned helios strategy; and (iii)Distributional
RL achieves a better learning performance than the expected-value
approach (here implemented as DQN) in two evaluated scenarios.
To the best of our knowledge, this paper represents the first effort
towards applying Distributional RL to a multiagent task.

2 BACKGROUND
RL is a paradigm for learning in Markov Decision Processes (MDP)
[11]. An MDP is described by a tuple ⟨S,A,T ,R⟩, where S is the
(possibly infinite) set of states in the system, A is the set of actions
available to the agent, T is the state transition function, and R is
the reward function. T and R are unknown in learning problems,
hence the agent must learn through samples of interactions with
the environment. The agent objective is to learn a policy π : S → A
that dictates an action to any possible state. In some of the most
commonly used RL algorithms (such as Q-Learning [14]), the agent
iteratively refines an estimate of the quality of each action in each
state: Q∗(s,a) = E

[∑∞
i=0 γ

iri
]
, where ri is the reward received

after i steps from using action a on state s and following the op-
timal policy on all subsequent steps, and γ is a discount factor.
When the state-action space is discrete, the Q function can be
simply represented as a table containing entries for all possible
state-action pairs. However, when the state space is continuous
or too big, using a function approximator (such as a Neural Net-
work [5]) is required. An optimal policy can be extracted from Q∗

as π∗(s) = argmaxa Q∗(s,a). However, the Q function preserves
only the expected value of the actions, while information about the
distribution of returns is lost. Distributional RL, on the other hand,
aims at improving an estimate of the distribution of possible re-
turns, which might result in more stable learning when allied with
function approximators [2]. The C51 algorithm builds a parametric
distribution assigning a probability to N possible returns, evenly
spaced between two parameters Vmin and Vmax . The goal of C51
is to learn a parametric model θ : S ×A → RN

Zθ (s,a) = zi w.p. pi (s,a) =
eθi (s,a)∑
j e

θ j (s,a)
, (1)

where Zθ is the value sampled from the distribution, zi is the i-
th possible return value defined by the distribution parameters,
pi (s,a) is the probability of Zθ being zi for state s and action a,
and θi (s,a) is the value defined by a function approximator (often
a Neural Network). For defining the policy, it is possible to either
retrieve theQ-value from the distribution :Q(s,a) =

∑N
i=1 zipi (s,a)

or to directly reason over the probabilities of return (we consider
both possibilities in the next section). During training, the function
approximator defining θi (s,a) is iteratively refined by minimizing
the KL divergence between the learned distribution and the samples
observed (for a complete description of the algorithm see [2]).



3 APPLYING DISTRIBUTIONAL RL TO HFO
Half Field Offense (HFO) is a subtask of the full RoboCup simulated
soccer [4]. An offensive team tries to score a goal against a defensive
team in half of the field. The episode ends if a goal is scored, the de-
fensive team steals the ball, the ball leaves the half-field boundaries,
or a time limit is reached. HFO is easily configurable and can be
used to build tasks with varying levels of difficulty by changing the
number of defensive or offensive agents, the starting position of the
ball, and the strategy of the agents. Moreover, HFO provides high-
level actions and state features based on successful teams in the
RoboCup competition, as well as the possibility of quickly loading
high-performance strategies for some of the agents, and composing
teams of challenging opponents or high-performing teammates. In
this section we perform experiments in the HFO domain and show
the quality of the learned policy when using Distributional RL.

In all our experimental settings, we train the agents in the of-
fensive team and set the defensive agents to the Helios strategy [1].
The C51 algorithm was implemented by building a Deep Neural
network for each possible action, where each of them is composed
of 3 fully-connected hidden layers with 25 neurons. The Neural
Networks receive as inputs all the state variables and output val-
ues θi (s,a). The following state variables were used (normalized
in the range [−1, 1]): (i) agent position: (X,Y) current agent posi-
tion on the field; (ii) orientation: the global direction the agent
is facing; (iii) ball position: (X,Y) ball current position; (iv) prox-
imity to the goal: distance between the agent and the center of
the goal; (v) goal angle: angle from the agent to the center of the
goal; (vi) goal opening: largest open angle to the goal; (vii) clos-
est opponent proximity: distance from the agent to the nearest
opponent; (viii) positions, goal opening, pass opening, and op-
ponent proximity for each teammate.; (ix) position of each
opponent. When the agent has the ball possession, the available
actions are: (i) Shoot - Tries to score a goal by shooting the ball; (ii)
Dribble - advances the agent and ball towards the goal; (iii) Pass -
the agent has an available pass action to each teammate; and (iv)
Move - the agent moves to the best position according to the high-
level action set available to standard HFO agents. In case the agent
does not have the ball, only the latter action is applicable. The three
first ones can be applied only when in possession of the ball. In case
the agent scores a goal, a reward of +1 is given. For all unsuccessful
episode terminations, the agent receives a reward of −1. A reward
of 0 is given otherwise. We also evaluate the learning performance
of Deep Q-Networks (DQN) [5] as a baseline for expected-value
RL. All algorithms are trained by batch updates using Prioritized
Experience Replay [7]. All implementations can be downloaded at
https://github.com/f-leno/Distributional_HFO.

3.1 1x1 HFO
Our first experiment involves a 1x1 HFO task. A learning agent
tries to score a goal against a keeper following the Helios strategy.
When we set the Helios strategy to the offensive agent, it scores
in roughly 82% of the attempts. Therefore, this is a task where a
very high performance level can be obtained. Our main goal in this
scenario is to evaluate the distribution learned by the agent, since
it is easier to visualize and interpret it when only a single learning

agent is present in the environment. We train the agent for 10, 000
learning episodes.

Figure 1 shows the learned distribution in three states after the
agent has finished training. In the left state the agent is in the initial
state. Notice that, since only one offensive agent is in the field,
the pass action is not enabled. We depict here only states where
the agent has the ball possession to illustrate how the distribution
influences the decision making, hence move is not shown in the
graphs. Both shoot and dribble present a bi-modal distribution,
which corresponds to the reward function that returns either −1 or
+1 in the end of the episode. Both actions have a large probability
mass around +1 because if the agent incorrectly shoots the ball
from so far, it is still possible that the agent will reach the ball before
the keeper and not lose the possession. However, since dribble has
a larger probability mass around +1 than shoot, the agent chooses
to dribble. In the state shown in the central image, the agent got
closer to the goal, but not enough to score a goal with certainty.
Moreover, in case of not scoring when shooting, the keeper will
have the possession of the ball, terminating the episode in failure.
The much larger probability mass around −1 for the shoot action is
consistent with the agent current state. Since the dribble action has
not changed much its distribution from the left image, the agent
chooses to dribble in this case as well. Finally, in the right state the
agent is very close to the goal and has a good opening for shooting.
The dribble action is good enough for avoiding running over the
keeper and losing the ball in most cases, hence the probability mass
around +1 is still large. However, shoot has now a slightly larger
probability mass around +1, causing the agent to shoot the ball and
score the goal.

In addition to building a Q-table from the distribution (as dis-
cussed in Section 2 - hereafter named as C51Average), we also
evaluate reasoning over the distribution when the agent has the
ball possession as follows (hereafter named as C51Threshold):

π (s) =


Shoot if pz>0(s, Shoot) > 0.5
Pass else if pz>0(s, Pass) > 0.5

Dribble otherwise
(2)

where pz>0(s,a) is the probability of achieving a return greater
than 0 when applying action a in state s according to the learned
distribution. This policy was devised following the intuition that
dribbling is safe in most situations, while mistimed shots almost
always cause the episode to end negatively and misplaced passes
make the agents lose a lot of time. We observed in preliminary
experiments that the policy of expected value-based RL would very
frequently cause the agents to only pass the ball to each other or
to shoot as soon as in possession of the ball because the dribble
action had a slightly lower value during training. Hence, in this
way, the agents would only shoot or pass when reasoning that
there is a good probability of scoring a goal after applying those
actions. The thresholds were not overly optimized, as an approach
very sensitive to hyperparameters is less likely to be effective in
different scenarios, which would defeat our purpose in this paper.

Figure 2 shows the performance progression during the training
process. Although DQN is capable of learning an effective pol-
icy that scores around 60% of the attempts, both Distributional
RL algorithms achieve a high performance faster. C51Average also
converges to a better performance than DQN, scoring 80% of the
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Figure 1: States in the 1x1 scenario (top - point of view of the goalkeeper) and their respective learned distributions of values
for each action (bottom).

attempts after roughly 1, 700 learning steps, and eventually achiev-
ing a slightly better performance the handtuned Helios strategy.
C51Threshold learns to score 60% of attempts very quickly, taking
advantage of the domain-specific probabilistic reasoning. However,
it eventually converges to roughly the same performance as DQN,
showing that it would require further tuning on the thresholds to
reach the same performance as C51Average.

3.2 2x2 HFO
We here evaluate a more complex learning problem. In addition to
the goalkeeper, the defense team now has a defensive field player.
The offensive team now is composed of two learning agents trying
to score the goal, which means that now the Pass action is enabled.
Learning in this scenario is much more challenging. The presence
of an additional defensive player reduces drastically the probability
of scoring a goal randomly, and badly-timed passes might be inter-
cepted or make the agents waste time to recover the ball. When
using the Helios strategy, the offensive team scores in roughly 60%
of the attempts.

Figure 3 reflects the difficulty of learning in this scenario. Both
DQN and C51Average fail to learn how to score goals consistently.
Since applying Shoot or Pass actions at the wrong time most likely
results in a failed episode, those algorithms are not able to get
enough positive examples by using ϵ-greedy over the Q-function.
By the end of the training process, the DQN policy is basically pass-
ing between the 2 agents with no clear strategic purpose and almost
never shoots. We believe that this behavior was acquired after the
agents observed that passing when having a clear passing angle
usually does not terminate the episode, while when mistakenly
shooting the episode would terminate immediately in failure. The

agents were not able to consistently identify good opportunities
to shoot yet after the 10, 000 learning steps. C51Average agents
alternate between passing the ball and occasionally dribbling, both
of them usually advancing towards the goal. When in very open
positions the agents are able to shoot the ball and score a goal. How-
ever, they are not very consistent in achieving an open position,
and they seem to achieve it only by luck. Some misplaced shots
are also occasionally executed, resulting in a very bad performance
overall.

However, C51Threshold was able to score roughly 40% of at-
tempts by the end of training. Due to the domain-specific prob-
abilistic reasoning the agent performed a more risk-sensitive ex-
ploratory behavior, avoiding to pass and shoot in states where those
actions failed before. By the end of training, the agents have de-
veloped a behavior that is effective in some situations. Either the
agents try to score individually by carrying the ball and shooting
when having an open goal angle, or they pass the ball when they
expect their teammate will be able to score. A curious behavior
has been repeated by the agents with good effectiveness. When
marked by the opponent field agent close to the goal, the agent
with the ball would pass back to the other agent that is usually
behind, this agent will then dribble for a short amount of steps and
attempt a shoot. This behavior was mostly effective in the observed
evaluations and resulted in scored goals frequently. The agents ap-
plying C51Threshold are much better in evaluating when to shoot
the ball, scoring most of the time when shooting. Although already
achieving a good performance, by the end of the 10, 000 steps the
agents are much better in some portions of the field. Therefore we
expect the performance could be increased by training the agents
for a longer time.
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Figure 2: Average of scored goals in 100 evaluation episodes after every 100 learning episodes in the 1x1 scenario. The shaded
area corresponds to the 95% confidence interval observed in 50 repetitions.

Figure 3: Average of scored goals in 100 evaluation episodes after every 100 learning episodes in the 2x2 scenario. The shaded
area corresponds to the 95% confidence interval observed in 50 repetitions.

Both experimental scenarios indicate that Distributional RL per-
forms well in HFO, in agreement with the findings of Bellemare et
al. [2] in the Atari domain. Even in the second scenario where DQN
failed to learn in the given training time, C51Threshold leveraged
the probabilistic reasoning enabled by Distributional RL to learn a
good policy.

4 WHY USE DISTRIBUTIONAL RL IN
MULTIAGENT SYSTEMS?

Apart from the improvements shown in the last section, having
the distribution of returns available instead of only the averages
might present other advantages that we will explore in further
work. The use of Distributional RL for Transfer Learning [10, 13]
remains unexplored. The Ad Hoc Advising framework [9] enables
the exchange of knowledge between agents through action advis-
ing. However, the agents need an estimate of their confidence on

the current policy, which is not easy to define when the policy is
extracted directly from Q-values.

However, if the agents use Distributional RL, the distribution of
returns is more informative about how uncertain the agent is in the
current policy. Therefore a combination of Ad Hoc Advising with
Distributional RL is a very promising avenue. We further discuss
this line in Section 5.1.

Distributional RL has also been used to achieve sensitiveness
to risk. Serrano-Cuevas et al. [8] propose a risk-sensitive method
that plans over the learned distribution of values. Risk-sensitive
methods based on Distributional RL could also be extended to the
multiagent case.

5 CONCLUSION AND FURTHERWORK
In this paper we evaluated the use of Distributional RL in the HFO
domain. To the best of our knowledge this is the first reported
use of Distributional RL in a multiagent task, and opened new
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research opportunities in multiagent RL. The C51 Distributional
RL algorithm achieved a better performance than DQN in two
evaluated scenarios, and enabled us to define policies by reasoning
over the distribution of possible returns.

Our next research direction will be build upon the experiments
here reported to perform Transfer Learning experiments, lever-
aging Distributional RL to extract a confidence measure on the
current policy that will be useful for the Ad Hoc Advising transfer
framework.

5.1 Integrating Distributional RL and Ad Hoc
Advising

We here briefly discuss our initial thoughts on how the next steps
in our research could be carried out.

The Ad Hoc Advising framework [9] intends to accelerate learn-
ing in Multiagent RL by knowledge exchange between a group of
agents that are simultaneously learning in a shared environment.
Each agent has a confidence function ϒ : S → R, from which the
agent is able to estimate its confidence on its own policy for a given
state. At every learning step, the agent evaluates ϒ(s) for the current
state s . If the confidence is low, a request for help is broadcasted to
the other agents in the system, which, if they are confident enough
in their own policies, might answer with an action suggestion that
the advisee might follow.

Although this framework was able to accelerate learning in the
HFO domain, the original publication defines ϒ(s) as follows:

ϒvisit (s) =
√
nvisits (s), (3)

where nvisits is the number of times the agent visited a particular
state. The intuition of this function is that, as higher the number
of visits in a state, as better will be the agent performance. This
does not hold in all cases but achieved a good performance for the
advising framework. However, this function has two main inconve-
niences: (i) the number of visits for all states must be stored; and
(ii) it is inapplicable if the exact same state is not expected to be
visited many times.

The original publication applied the framework to HFO by dis-
cretizing the state space through tile code. However, in addition of
having to store a table of visit counts for each discretized state, tile
coding is also not applicable in every task (e.g., tasks in each the
state is observed through an image). Although previous versions
of the framework used the Q-table to derive confidence functions
[12], the Q-values are not themselves enough to approximate a
confidence on the state until the advisor converged to an optimal
policy.

However, the Distributional RL might enable us to derive a confi-
dence function directly from the learned distribution of values. The
main research question to be answered next is how to do it. Since
the agents start learning from a roughly uniform distribution and
then specialize it to the task, the shape of the distribution might
be usable as a proxy of for how long the agent has been training.
Evaluating the entropy of the distribution seems to be a promising
starting point.
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