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ABSTRACT
Real-world systems are typically extremely complex, consisting of
thousands, or even millions of state variables. Unfortunately, apply-
ing reinforcement learning algorithms to handle complex tasks be-
comes more and more challenging as the number of state variables
increases. In this paper, we build on the concept of influence-based
abstraction which tries to tackle such scalability issues by decom-
posing large systems into small regions. We explore this method
in the context of deep reinforcement learning, showing that by
keeping track of a small set of variables in the history of previous
actions and observations we can learn policies that can effectively
control a local region in the global system.

KEYWORDS
Reinforcement Learning; Dec-POMDP; Influence-based abstraction

1 INTRODUCTION
The strength of reinforcement learning (RL) methods in training
agents to solve certain tasks depends very much on the size of
the problem and the amount of computing power that is available.
In some cases, the use of function approximators, instead of ta-
bles, allows generalizing between multiple states and reduces the
complexity of the problem. Yet, learning models that can represent
policies or value functions from extremely large input spaces still
remains very challenging.

However, it seems plausible that certain systems can be broken
down into small, simple pieces that can be studied separately and
then combined together to give a solution to the original problem.
Take traffic control for example. Due to the large number of state
variables, directly applying deep learningmethods to model a policy
to control the traffic lights of an entire city is intractable. Moreover,
this centralized approach would also require an expensive commu-
nication system that could collect sensor data from the entire city in
real-time. Alternatively, we could try to find a policy that can direct
traffic at a single intersection by only receiving local information.
Unfortunately, in some situations, using only the current obser-
vation we would not be able to predict the consequences of our
own actions, even if the policies of the agents controlling the other
intersections remained fixed. Some of the external state variables
that are abstracted away could influence the local region and affect
the transition probabilities. In other words, although using only a
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fraction of all the information available makes learning an optimal
policy computationally more tractable, it turns the problem into a
partially observable Markov Decision Process (POMDP) [14].

Partial observability in RL has been extensively studied during
past years [8]. The methods can be roughly divided in two broad
categories. On the one hand, there are approaches that ignore the
lack of Markov property and apply standard RLmethods [15, 20, 29].
Issues like chattering and divergence, however, make the applica-
bility of these algorithms unsuitable for situations in which the
observation space contains insufficient information [7, 10]. On the
other hand, we have methods that more explicitly deal with non-
Markovianity: policy search [13, 22], learning POMDP-like models
[6, 9], predictive state representations [36, 37], EM-based methods
[16, 34], (Monte-Carlo) AIXI [12, 33]. More recent approaches use
recurrent neural networks (RNN) to maintain a context of what
has occurred up to the current time step [11, 35]. However failure
to converge or converging to poor quality local optima are typical
issues of all these methods in practice. Besides, in our case, keeping
track of a complete sequence of actions and observations would
only transfer the scalability issues from the state space to the tem-
poral space, which could make this approach impractical in some
cases.

Aiming at finding common ground between these two method-
ologies, we investigate if it is possible to predict how the system’s
non-local dynamics influence the small region we aim to control
by using only a small fraction of local variables. Previous work on
influence based abstraction (IBA) [25] demonstrates that the non-
Markovian dependencies that affect the local problem can be fully
monitored by keeping track of a subset of variables in the history
of local actions and observations, while the rest of the local region
can be assumed to be Markovian. The intention of this paper is to
show with practical examples that a similar approach can also be
applied to deep RL. In particular, we use the insights from IBA to
propose a different way of organizing the neural network used for
policy and value estimation: we place recurrent cells at the border
regions of the abstracted representation thus imposing an inductive
bias on the function. This method is tested on a traffic setting [17]
and a version of the Atari breakout video game [3]. The results
suggest that informed placement of memory can indeed facilitate
learning. We see improved performance, in some scenarios, when
compared to memoryless policies, and better or equal performance
when compared to networks which do not carefully select the posi-
tion of the recurrent cells but instead feed the RNN with the entire
input image.



This paper is organized as follows. First, we present a simple
traffic example that we will use to clarify some of the ideas that
are discussed throughout the paper. Then we briefly outline the
concepts of POMDP and IBA which are the basis of our work. In
section 4 we explain how to adapt IBA to deep RL and describe
the Influence network structure that we use in our experiments.
Finally, we discuss the results and set the direction of future work.

A

B C

x1

x3

y

Agent A’s
local problem

x2

Figure 1: The local state of intersection A might depend in
non-trivial ways on its past.

2 EXAMPLE SCENARIO
Figure 1 shows a small traffic network with three intersections. The
task consists of optimizing the flow of vehicles at intersection A.
The agent can only access the local region delimited by the red
circle. Variables denoted by x correspond to state features that are
local to the agent while y is assigned to those that are external
and therefore, not part of the agent’s input space. These variables
determine the traffic density at each of the road segments.

The intuition is that a memoryless agent controlling the traffic
lights in A could make instantaneous decisions based on the cars
that happen to be inside the red circle at the current time step. Yet,
if this same agent could also memorize the number of cars that
had left the intersection in the direction of B or C, it could use this
extra information to estimate a possible increase in the incoming
traffic at the local region. For instance, if the traffic density at the
road segment that connects A and B increases, the lights at B could
switch to green and let the vehicles coming fromA continue straight
and leave the intersection. This would, in turn, reduce the amount
of traffic going from B to C, which could make C send more vehicles
towards A.

3 BACKGROUND
In this section we introduce the required background on which
we build in the remainder of the paper. This consists of a concise
overview of some of the formal frameworks for decision making
under uncertainty, and the concept of influence-based abstraction.

3.1 Decision Making Frameworks
The main focus of this paper will be on partially observable single
agent problems. However, we envision that these would typically
be embedded in a multi-agent context. For instance, in a large traffic

control problem, we would want to learn a local best response to the
policies used at the other intersections. To clarify the embedding
of a single decision maker in a multi-agent scenario, we introduce
the more general Dec-POMDP framework [24].

Definition 3.1 (Dec-POMDP). A Dec-POMDP is a tuple M =

⟨n, S,A,T ,R,Ω,O,h,b0⟩ consisting of:
• a set of n agents;
• S is the (finite) state space;
• A = A1×· · ·×An is the space of joint actionsa = (a1, . . . ,an ),
where Ai is the set of actions for agent i;

• T is the transition probability function, T (st ,at , st+1) =
Pr (st |at , st+1). That is, the probability of st+1 being the next
state given that the joint action at is taken in state st ;

• R(st ,at ) is the immediate reward function received by every
agent for taking the joint action at in state st ;

• Ω = Ω1 × · · · × Ωn is the set of the joint observations o =
(o1, . . . ,on ), where Ωi is the set of observation for agent i;

• O is the observation probability function which specifies
O(at , st+1,ot+1) = Pr (ot+1 |at , st+1), the probability of re-
ceiving a joint observation ot+1 after taking the joint action
at and ending up in state st+1;

• h is the horizon;
• b0 is the initial state distribution;

Given a full Dec-POMDP model, the task consists of finding the
set of policies π1, . . . ,πn that maximizes the expected discounted
sum of rewards [31]. Since each of the n agents receives only a
partial observation of the true state s , a policy that is based only
on the most recent information would be sub-optimal. Agents are
required to keep track of their past experiences to make the right
action choices. Policies are therefore mappings from the history of
individual observations to actions.

A convenient way of representing the states in a Dec-POMDP is
by using a set of state variables, often called factors:

Definition 3.2 (factored Dec-POMDP). A factored Dec-POMDP
is a Dec-POMDP whose state space S is the product of some state
variables, or factors. That is, a state s = ⟨x1, ...,xk ⟩ is specified by
some number k of state variables Xi which take values xi .

In the traffic scenario in figure 1, a state is fully specified by
a set of variables that measure the traffic density at each of the
road segments. We use x for factors that belong to an agent’s local
observation space and y to denote external state variables. In the
next section, we show how using this representation we can more
closely study how transition, observation and reward functions
affect our system by focusing on how the different factors are
influenced by each other.

As mentioned before, we will focus on single agent scenarios.
Given a Dec-POMDPM and a set of fixed policies π−i for all the
agents except agent i , we can treat them as part of the environ-
ment dynamics and define a POMDP for agent i’s decision making
problem [21]:

Definition 3.3 (POMDP). A POMDP is a Dec-POMDP with n = 1
decision making agents.

In this setting, agent i’s policy can be represented as a function
that takes as input the belief b(s) over the possible states s and
outputs the action to be taken.
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Figure 2: Simplified representation of the traffic example as a DBN unrolled over time. We use x for factors that belong to
the agent’s local observation and y to denote external state variables. The arrows reveal the dependencies between the factors
shown in the diagram. For simplicity, some of the external state variables as well as the actions taken at intersection B are
omitted from the Bayesian network.

Definition 3.4 (Belief). A belief of an agent in a POMDP is a
probablity distribution over states:

bt (st ) = Pr (st |ot ,at−1, ...,o1,a0). (3.1)

After taking an action and receiving a new observation, the belief
state can be sequentially updated using Bayes’ rule:

bt+1(st+1) =
1
η

∑
st

T (st ,at , st+1)O(at , st+1,ot+1)bt (st ), (3.2)

where η is a normalization constant,

η =
∑
st

T (st ,at , st+1)
∑
ot+1

O(at , st+1,ot+1)bt (st ). (3.3)

We can apply the update formula to maintain a belief over the
states and try to obtain a policy that can map from beliefs to actions.

Finding the exact solution of the POMPD is equivalent to comput-
ing a best response to the set of fixed policies π−i in the multi-agent
context. Note that the variable at in 3.2 refers only to the action
taken by a single agent, while the other agents’ actions are given by
π−i . The reason why π−i does not appear in equation 3.2 is because
the policies are considered part of the environment dynamics and
therefore modeled by T (st ,at , st+1) [1].

The RL formulation, however, does not assume complete knowl-
edge of the environment dynamics. We can only estimate observa-
tion and transition functions by interacting with the environment.
This means that the exact belief cannot be computed. Instead, the
agent needs to learn a representation that provides a Markovian sig-
nal to learn over, using the past history of actions and observations
[18].

In section 4 we explain how we try to solve the POMDP RL
problem by applying spatial abstraction to simplify our local model.

Our intention is not to compare this solution with the one we could
obtain if we had access to all the state factors since we consider
that modeling the full set of variables present in our system is
computationally intractable.

3.2 Influence Based Abstraction
Here, we briefly describe the framework of influence-based abstrac-
tion, aiming at getting across the intuition and core concepts, for
an extensive discussion see [25].

Conceptually the idea of IBA is (1) build a smaller local model
for one or a few agents given the policies of the others, then (2)
compute an abstract representation of the influence exerted by
the rest of the system on the local model, and finally (3) use this
influence-augmented local model to compute a best response policy.

We will try to illustrate this using the traffic example in figure 1.
As we already mentioned, the agent’s local model consists of those
features that lie within the red circle. These correspond to the nodes
labeled with x in the dynamic Bayesian network [26] depicted in
figure 2 where we unrolled 3 time steps. The arrows reveal some of
the dependencies between variables. For instance, according to the
diagram, x2 depends on the value of x1 and x2 at the previous time
step. The network also shows how the local model is affected by the
external variables y that are outside the agents observable region.
The actions taken by each of agents at the intersections A and C
are denoted by aA and aC respectively. For simplicity, some of the
external state variables as well as the actions taken at intersection
B are omitted from the Bayesian network.

By inspecting both figure 1 and the Bayesian network 2 we see
that ac influences x3 at the following time step via y. That is, the
actions taken at intersection C will affect the traffic density at the
road segmenty which in turnwill affect x3. In particular, we say that
y is an influence source for x3, which is called influence destination.
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Figure 3: InfluenceNet architecture. The input image is first processed by a CNN, which finds a compact representation of the
local observations. The whole encoded image is fed into a FFNN while the RNN receives only small regions, the d-patches,
combines them with its internal state and outputs the influence prediction. Finally the output of the FFNN is concatenated
with the influence prediction and passed through two separate linear layers which compute values and action probabilities.

To compute a best response policy, we need to estimate future
states of our global system. If we want to predict the probability
over the possible values of x1 at the next time step it is enough to
know its current value and the action taken. However, estimating
future values ofx3 turns out to bemuchmore complicated because it
depends on external variables. Hence,x3 does not follow theMarkov
property since it does not only depend on the present observation.
Yet, if we consider the policies of the agents at intersections B and C
to be fixed, we can treat them as part of the environment dynamics,
calculate the probability distribution of y, Pr (y |h), based on our
local history h, and use it to predict x3.

Moreover, we can exploit the spatial properties of our traffic net-
work and ignore certain nodes that are conditionally independent
from y . We define the d-separating set d as the smallest subset of
variables in our local history that we need to condition on to com-
pute the probability of the influence sources. In other words, the
d-separating set is the group of variables that d-separates ([4], chap.
8) the influence sources from the rest of the local region. Adding
any other local variables to the d-separating set would not bring any
extra evidence, Pr (y |h) = Pr (y |d). The blue circles in the Bayesian
network correspond to the nodes that form the d-separating set in
the traffic example.

The upshot of IBA is that one can replace the spatial dependence
of the local region on the non-local part by a time dependence on
the d-separating set and create models without any loss in value.
Unfortunately, this history dependence leads to large computational
costs when approached exactly. In this paper, we investigate if it is
possible to adapt this perspective to function approximation and
exploit it in the context of deep RL.

4 INFLUENCE-BASED ABSTRACTION IN
DEEP RL

One of the advantages of using neural networks as function ap-
proximators is that we can directly work on a high dimensional
sensory input without having to extract more descriptive features.
For instance, in our traffic scenario, rather than using state vari-
ables, we can use images [23, 27] centered around intersection A
to capture the traffic density. This implies that we need to redesign
the influence model so we can safely apply spatial abstraction. In
this section, we first explain conceptually how the ideas of IBA can

be translated into an inductive bias for deep RL, then we give some
details on the resulting ‘InfluenceNet’.

4.1 Influence-based Inductive Bias
As previously mentioned, by abstracting away those parts of the
system that have a weaker impact on the local region we care
about, we converted our problem into that of a POMDP [2]. Some
of the state variables are no longer Markovian when using only
local information to control our system, which makes the usual RL
methods inappropriate.

We could still train an agent to control the system by only using
our most recent observation, but this might lead to making subop-
timal decisions due to the fact that we lack some information about
the past history. If we want to make good action choices in this new
setting, it is essential that we treat the problem as a POMDP, and
keep track of the past actions and observations. The obvious way to
do so would be to store a finite history of experiences and feed these
to the network. However, we could soon run into computational
issues if the observation space is too big or the history is too long.
Instead, we could train an RNN to maintain and update a context
of what has occurred up to the current timestep [11, 35]

Training an RNN on memorizing information about a high di-
mensional input space, like an image, is particularly expensive.
Especially if the information needs to be retained for a long period
of time. Ideally, we would like our model to focus on remembering
only the essential pieces. The theory of IBA demonstrates that in or-
der to capture the non-Markovian dependencies introduced by the
abstraction of the global system, it suffices to condition on the his-
tory of a subset of local variables as long as that subset d-separates
the influence sources from the remainder of the local problem. In
our case, since the input to our network is an image, explicitly
identifying an exact d-separating set and computing the influences
is cumbersome. Instead, we make use of the spatial structure of the
system to introduce an inductive bias in the model of our policy.
That is, we define ‘d-patches’, which are small regions in the input
space, and feed these into recurrent layers. As such, we effectively
discriminate the local state variables between those that we need
to remember about and those that we can treat as Markovian.

Going back to the traffic example, we could assume the dynamics
inside the intersection to be Markovian and process them directly
by a feedforward neural network (FNN). However, if we want to
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be able to predict the aforementioned incoming influences, it is
important to place d-patches at the two road segments that connect
A with B and C so that our RNN can maintain an internal context
of what happens there.

4.2 InfluenceNet
In this section we describe the specific structure of the neural
network that we employ for both policy and value function. We call
the network InfluenceNet because it ties up well with the concept
of IBA, where a small set of variables in our local history is used to
determine how the system will react to our previous decisions.

The InfluenceNet architecture is depicted in figure 3. The input
image is first processed by a convolutional neural network (CNN),
which finds a compact representation of the local observations. The
whole encoded image is fed into a FNN while the RNN receives
only small preselected regions, the d-patches, combines them with
its internal state and outputs the influence prediction. Finally the
output of the FNN is concatenated with the influence prediction and
passed through two separate linear layers which compute values
and action probabilities.

As shown in the diagram, both RNN and FNN share the same
CNN. Hence, instead of making the split between Markovian and
non-Markovian variables on the input image and training two sep-
arate networks, we extract the d-patches after the image has been
processed by the CNN, which significantly reduces the total number
of parameters in our network. This algorithmic choice allows us to
make better use of the information since the convolutional filters
that are connected to the RNN are trained on a full image rather
than on a small patch. Thus, more data is being used in every update
to optimize the convolutional filters. This is only possible because
the output of the CNN maintains the same spatial configuration as
the input image.

Although the network architecture also suits any value based
or policy gradient method, in our experiments we combine it with
Proximal Policy Optimization (PPO) [28].

5 EXPERIMENTS
The InfluenceNet model was tested on two different environments:
a traffic control task, where we made obvious the effect of incoming
influences, and a modified version of the popular Atari Breakout
video game that we call Myopic Breakout. Both environments are
designed to be partially observable so that the agent can onlymaster
the tasks if it keeps track of previous actions and observations.

We compare the performance of memoryless policies and re-
current models to show that an agent can only reach a bounded
level of performance when using only the most recent information.
Furthermore, we also test whether the influence model, where the
RNN receives only selected regions of the encoded image, improves
over a regular RNN model 1.

5.1 Traffic Control
In this environment, the agent must optimize the traffic flow at
the intersection in Figure 4. We restrict the observation space to
the non-shaded area shown in the image. The agent can take two
different actions, either switching the traffic light on the top to
1Videos showing the results of our experiments can be found at https://bit.ly/2UmKsY7

Figure 4: Traffic control environment. The observable region
corresponds to the non-shaded box centered at the intersec-
tion. The d-patches are the grey areas at the left and bottom
parts of the local region.

Figure 5: Myopic Breakout environment. The obscured re-
gion is invisible to the agent. The grey stripe represents d-
patch that is fed into the RNN.

green, which automatically turns the other to red, or vice versa.
There is a 6 seconds delay between the moment an action is taken
and the time the lights actually switch. During this period the green
light turns yellow and no cars are allowed to cross the road. In every
episode, a total of 6 cars start either at the top right or bottom left
corner. The episode ends when all 6 cars have completed 4 loops.

The local reward function is defined as follows:

rt =
N∑
i=1

wi , (5.4)

where N is the total number of vehicles in the local region andwi
is a penalty for the i-th car if it is not moving.

We built the environment using SUMO (Simulator of Urban
Mobility) [17]. The traffic network was designed so that the agent’s
local observations are clearly non-Markovian. Cars leaving the
observable region from the right-hand side will appear again after
some time at the top part. Hence, the agent is forced to memorize
that information in order to be able to make the right decisions.
Knowing this, we place the d-patches at the end of the outgoing
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Figure 6: Traffic control. Mean cumulative episodic reward
at every 10K time steps. The curves are the average of 5
runs. Shaded areas indicate the one standard deviation of
the mean.

road segments and treat the rest of the hidden features in the local
observation as Markovian, see grey boxes in Figure 4.

5.2 Myopic Breakout
We want to show that an agent with limited vision can learn the
global dynamics of a given system and be able to anticipate the
long term effect of its own actions by only keeping track of the
history of a subset of variables. To that end, we created Myopic
Breakout using OpenAI Gym [5]. In this version of the Atari video
game the agent only receives as input a small region at the bottom
of the screen, Figure 5.

The intuition is that, because the dynamics of the scenario are
relatively stationary, the agent should be able to make a reasonable
prediction about where the ball will hit next according to the direc-
tion and speed at which it left the local region. Therefore, we place
the d-patch at the top part of the observable region (grey stripe
Figure 5).

5.3 Experimental setup
The InfluenceNet model (PPO+InfluenceNet) was tested against two
other different network configurations: a model with no memory
(PPO+FNN) and a full recurrent model (PPO+RNN) where the RNN
is fed with the whole output of the CNN. Note that all three models
have only access to the small observable region shown in Figures 4
and 5. We ran our experiments 5 times with different random seeds
and using the hyperparameters given in the appendix. We used
the cumulative reward obtained in every episode as performance
measure. In each run the values are averaged every 10K and 100K
steps for Traffic Control and Myopic Breakout respectively. For
more details about hyperparameter tuning see the appendix.

5.4 Results
The results of running PPO using the three different network con-
figurations, PPO+FNN, PPO+RNN and PPO+InfluenceNet on the

Figure 7: Myopic Breakout. Mean cumulative episodic re-
ward at every 100K time steps. The curves are the average
of 5 runs. Shaded areas indicate the one standard deviation
of the mean.

traffic control task and the Myopic Breakout environment are de-
picted in Figures 6 and 7 respectively. The curves show the mean
cumulative reward averaged over 5 runs with different random
seeds.

In the traffic control task, the size of the observable region and
the time delay between actions and traffic light responses were
chosen so that if an agent tries to switch the light at the exact
time when a car enters the local region, the car will have to stop
for a few seconds before continuing. This enforces the recurrent
models to remember the location and the time at which cars left the
intersection and limits the performance of agents with no memory,
see Figure 6. Agents need to anticipate to cars appearing at the
incoming lanes and switch the lights in time for the cars to continue
without stopping. Although the InfluenceNet model takes more
steps to converge to the optimal policy, we obtained speedups of
around 1.5 with respect to the full RNN model when comparing
wall-clock times.

On the other hand, agents trained using InfluenceNet on Myopic
Breakout are able to outperform both the full recurrent model and
the feedforward model. By feeding only small d-patches, we reduce
the number of parameters in the RNN and ease the task of the
recurrent cells. We hypothesize that the InfluenceNet agent is able
to predict the location at which the ball will appear based on the
direction and speed at which it left the observable region 2.

6 DISCUSSION
Although we believe the results obtained are very promising, for
the sake of transparency, we would like to mention that before
reaching the reported levels of performance we had to test different
sizes and configurations for the observable region and the d-patches.
Besides, in the traffic control task, the reward function used in [23]
had to be modified to facilitate the learning task to the RNN. The
travel delay penalty, which is the ratio between a car’s speed and

2Videos showing the results of our experiments can be found at https://bit.ly/2UmKsY7
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the maximum allowed speed, induced a noisy reward signal and
made it difficult for both the full RNN and the InfluenceNet model
to associate the event of cars entering or leaving the local region
with future penalties.

On the other hand, we are also aware that pinpointing the exact
regions that are fed to the RNN is not always an option since it
requires some amount of prior domain knowledge. Besides, in some
situations the d-patches might differ from one state to another.

7 CONCLUSION AND FUTUREWORK
In this paper, we investigated if the concept of IBA can be effectively
translated into the context of deep RL. In particular, we focused on
problems where the agent can only observe a local region of a larger
system and tested whether, by keeping track of only a small fraction
of the information available, we could estimate the influence that
the non-local system exerts on the agent’s local neighborhood.

The experiments reveal that agents equipped with internal mem-
ory can anticipate the response of the system to earlier actions and
react accordingly. We showed that, by making the split between
Markovian and non-Markovian regions in the local observation, we
were able to simplify the neural network architecture and consider-
ably reduce training times. Moreover, the InfluenceNet structure
seems to facilitate the learning process and obtains better perfor-
mance than a regular RNN model on one of the two tasks.

In future work, we would like to study the actual benefits of our
approach when applied to more general scenarios. We believe that
the influence framework will enable important simplifications in
large systems so that we can solve complex problems with reason-
able computing power.

Our intention is also to investigate how to make the agent learn
what information is important to memorize at each particular state.
In this way, the agent would be able to automatically select the
d-patches so that they do not need to be specified beforehand.
A similar idea was explored in [30] using attention mechanisms
[32, 38]
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A HYPERPARAMETERS
The hyperparameters used in the two experiments are provided in
tables 1 and 2. We used the same hyperparameter configuration
reported by [19] as a starting point for all our different models, and
hand-tuned those parameters that were added in the InfluenceNet
architecture. These are the sequence length, which determines how
many steps the RNN is unrolled when computing policy and value
losses, and the size and position of the d-patches. If the sequence
length is too short, we might lose valuable information about the
past history, while longer sequences increase the computational
cost. In our traffic example, for instance, we tested different values
around the number of timesteps it takes for a car to complete
the loop since our expectation was that this should be enough to

capture all the history-dependent dynamics. On the other hand,
we would like our d-patch to be as small as possible while still
allowing the network to estimate the effect of the influence sources.
Given our computational constraints, we were only able to run
each configuration once. While additional runs would be needed to
be more conclusive about what the best configuration is, we still
expect to have found reasonable hyperparameter settings.

Table 1: Observation boxes and hyperparameter settings for
the traffic control scenario.

Traffic control
Observation full local d-patch 1 d-patch 2
box_height 112 56 1 1
box_width 112 56 1 1
box_topleft_corner [0,0] [65,9] [4,2] [2,4]
frame_height - 14 - -
frame_width - 14 - -
Algorithm PPO PPO+RNN PPO+InfluenceNet
num_frames 1 1 1
beta 1e-2 1e-2 1e-2
epsilon 0.2 0.2 0.2
time_horizon 128 128 128
CNN layer 1 layer 2 layer 1 layer 2 layer 1 layer 2
input local - local - local -
filters 16 32 16 32 16 32
kernel_size 4 2 4 2 4 2
strides 2 1 2 1 2 1
FFNN layer 1 None layer 1
units 256 - 128
LSTM None layer 1 layer 1
input - local d-patch 1 ∪ d-patch 2
rec_units - 256 128
seq_length - 128 128

Table 2: Observation boxes and hyperparameter settings for
the myopic breakout scenario.

Myopic breakout
Observation full local d-patch
box_height 84 25 7
box_width 84 84 19
box_topleft_corner [0,0] [54,0] [0,0]
frame_height - 42 -
frame_width - 42 -
Algorithm PPO PPO+RNN PPO+InfluenceNet
num_frames 4 1 1
beta 1e-2 1e-2 1e-2
epsilon 0.2 0.2 0.2
time_horizon 128 128 128
CNN layer 1 layer 2 layer 1 layer 2 layer 1 layer 2
input local - local - local -
filters 16 32 16 32 16 32
kernel_size 4 2 4 2 4 2
strides 2 1 2 1 2 1
FFNN layer 1 None layer 1
units 256 - 128
LSTM None layer 1 layer 1
input - local d-patch
rec_units - 256 128
seq_length - 32 32
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